Skip to main content

Genetic and Metabolic Engineering of Microalgae

  • Chapter
  • First Online:
Algae Biotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Microalgae are promising producers of many valuable compounds serving the food, feed, healthcare, and pharmaceutical industries. Microalgae grow rapidly and generally tolerate a wide range of environments. They can serve as cell factories for economical and sustainable production of diverse products. Microalgae can be transformed through genetic and metabolic engineering methods to overproduce the desired chemicals. Advancements in the “omics” technologies are generating information to allow design and creation of super algal strains for producing biofuels and other products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, M., Lentz, K. E., & Loppes, R. (1993). Insertional mutagenesis to isolate acetate-requiring mutants in Chlamydomonas reinhardtii. FEMS Microbiology Letters, 110, 265–268.

    Article  Google Scholar 

  • Adam, M., & Loppes, R. (1998). Use of the ARG7 gene as an insertional mutagen to clone PHON 24, a gene required for derepressible neutral phosphatase activity in Chlamydomonas reinhardtii. Molecular and General Genetics, 258, 123–132.

    Article  Google Scholar 

  • Andre, C., Haslam, R. P., & Shanklin, J. (2012). Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1-acyl carrier protein in Brassica napus. PNAS, 109, 10107–10112.

    Article  Google Scholar 

  • Anila, N., Chandrashekar, A., Ravishankar, G. A., & Sarada, R. (2011). Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. European Journal of Phycology, 46, 36–44.

    Article  Google Scholar 

  • Asamizu, E., Nakamura, Y., Sato, S., et al. (1999). A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Research, 6, 369–373.

    Article  Google Scholar 

  • Auchincloss, A. H., Loroch, A. I., & Rochaix, J. D. (1999). The argininosuccinate lyase gene of Chlamydomonas reinhardtii: Cloning of the cDNA and its characterization as a selectable shuttle marker. Molecular and General Genetics, 261, 21–30.

    Article  Google Scholar 

  • Barbier, G., Oesterhelt, C., Larson, M. D., et al. (2005). Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiology, 137, 460–474.

    Article  Google Scholar 

  • Bateman, J. M., & Purton, S. (2000). Tools for chloroplast transformation in Chlamydomonas: Expression vectors and a new dominant selectable marker. Molecular and General Genetics, 263, 404–410.

    Article  Google Scholar 

  • Baud, S., Mendoza, M. S., To, A., et al. (2007). WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant Journal, 50, 825–838.

    Article  Google Scholar 

  • Baud, S., Wuilleme, S., To, A., et al. (2009). Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant Journal, 60, 933–947.

    Article  Google Scholar 

  • Berthold, P., Schmitt, R., & Mages, W. (2002). An engineered Streptomyces hygroscopicus aph7 gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist, 153, 401–412.

    Article  Google Scholar 

  • Blanc, G., Duncan, G., Agarkova, I., et al. (2010). The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22, 2943–2955.

    Article  Google Scholar 

  • Blatti, J. L., Beld, J., Behnke, C. A., et al. (2012). Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoSONE, 7, e42949.

    Google Scholar 

  • Blatti, J. L., Michaud, J., & Burkart, M. D. (2013). Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Current Opinion in Chemical Biology, 17, 496–505.

    Article  Google Scholar 

  • Borovsky, D. (2003). Trypsin-modulating oostatic factor: A potential new larvicide for mosquito control. Journal of Experimental Biology, 206, 3869–3875.

    Article  Google Scholar 

  • Bowler, C., Allen, A. E., Badger, J. H., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239–244.

    Article  Google Scholar 

  • Brahamsha, B. (1996). A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Applied and Environment Microbiology, 62, 1747–1751.

    Google Scholar 

  • Broun, P., Poindexter, P., Osborne, E., et al. (2004). WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. PNAS, 101, 4706–4711.

    Article  Google Scholar 

  • Brown, L. E., Sprecher, S. L., & Keller, L. R. (1991). Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Molecular and Cellular Biology, 11, 2328–2332.

    Article  Google Scholar 

  • Cagnon, C., Mirabella, B., Nguyen, H. M., et al. (2013). Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnology for Biofuels, 6, 178.

    Article  Google Scholar 

  • Cernac, A., & Benning, C. (2004). WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant Journal, 40, 575–585.

    Article  Google Scholar 

  • Cerutti, H., Johnson, A. M., Gillham, N. W., & Boynton, J. E. (1997). A eubacterial gene confrring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression. Genetics, 145, 97–110.

    Google Scholar 

  • Cha, T. S., Chen, C. F., Yee, W., et al. (2011). Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga. Nannochloropsis Special Journal. Microbiological Methods, 84, 430–434.

    Article  Google Scholar 

  • Chen, Y., Wang, Y., Sun, Y., et al. (2001). Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Current Genetics, 39, 365–370.

    Article  Google Scholar 

  • Cheng, R., Ma, R., Li, K., et al. (2012). Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiological Research, 167, 179–186.

    Article  Google Scholar 

  • Choi, H. S., Lee, S. Y., Kim, T. Y., & Woo, H. M. (2010). In silico identification of gene amplification targets for improvement of lycopene production. Applied and Environment Microbiology, 76, 3097–3105.

    Article  Google Scholar 

  • Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141, 31–41.

    Article  Google Scholar 

  • Davies, J. P., Weeks, D. P., & Grossman, A. R. (1992). Expression of the arylsulfatase genes from the β2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Research, 20, 2959–2965.

    Article  Google Scholar 

  • Davies, J. P., Yildiz, F., & Grossman, A. R. (1994). Mutants of Chlamydomonas with aberrant responses to sulphur deprivation. Plant Cell, 6, 53–63.

    Article  Google Scholar 

  • Dawson, H. N., Burlingame, R., & Cannons, A. C. (1997). Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Current Microbiology, 35, 356–362.

    Article  Google Scholar 

  • de Hostos, E. L., Schilling, J., & Grossman, A. R. (1989). Structure and expression of the gene encoding the periplasmic arylsulphatase of Chlamydomonas reinhardtii. Molecular and General Genetics, 218, 229–239.

    Article  Google Scholar 

  • Debuchy, R., Purton, S., & Rochaix, J. D. (1989). The argininosuccinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular map of the ARG7 locus. EMBO Journal, 8, 2803–2809.

    Google Scholar 

  • Derelle, E., Ferraz, C., Rombauts, S., et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS, 103, 11647–11652.

    Article  Google Scholar 

  • Dillen, W., Clercq, J. D., Kapila, J., et al. (1997). The effect of temperature on Agrobacterium tumefaciens mediated gene transfer to plants. Plant Journal, 12, 1459–1463.

    Article  Google Scholar 

  • Donaher, N., Tanifuji, G., Onodera, N. T., et al. (2009). The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: Reduction, compaction, and accelerated evolutionary rate. Genome Biology and Evolution, 1, 439–448.

    Article  Google Scholar 

  • Dunahay, T. G. (1993). Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques, 15(3), 452–455, 457–458, 460.

    Google Scholar 

  • Dunahay, T. G., Jarvis, E. E., Dais, S. S., & Roessler, P. G. (1996). Manipulation of microalgal lipid production using genetic engineering. Applied Biochemistry and Biotechnology, 57, 223–231.

    Article  Google Scholar 

  • Dunahay, T. G., Jarvis, E. E., & Roessler, P. G. (1995). Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. Journal of Phycology, 31, 1004–1012.

    Article  Google Scholar 

  • Eberhard, S., Jain, M., Im, C. S., et al. (2006). Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii. Current Genetics, 49, 106–124.

    Article  Google Scholar 

  • Espenshade, P. J., & Hughes, A. L. (2007). Regulation of sterol synthesis in eukaryotes. Annual Review of Genetics, 41, 401–427.

    Article  Google Scholar 

  • Esquivel, M. G., Amaro, H. M., Pinto, T. S., et al. (2011). Efficient H2 production via Chlamydomonas reinhardtii. Trends in Biotechnology, 29, 595–600.

    Article  Google Scholar 

  • Falciatore, A., Casotti, R., Leblanc, C., et al. (1999). Transformation of nonselectable reporter genes in marine diatoms. Marine Biotechnology, 1, 239–251.

    Article  Google Scholar 

  • Feng, S. Y., Xue, L. X., Liu, H. T., & Lu, P. J. (2009). Improved of efficiency of genetic transformation for Dunaliella salina by glass beads method. Molecular Biology Reports, 36, 1433–1439.

    Article  Google Scholar 

  • Fernández, E., Schnell, R., Ranum, L. P. W., et al. (1989). Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. PNAS, 86, 6449–6453.

    Article  Google Scholar 

  • Ferris, P. J. (1995). Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics, 141, 543–549.

    Google Scholar 

  • Franklin, S., Ngo, B., Efuet, E., & Mayfield, S. P. (2002). Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant Journal, 30, 733–744.

    Article  Google Scholar 

  • Fuhrmann, M., Hausherr, A., Ferbitz, L., et al. (2004). Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Molecular Biology, 55, 869–881.

    Article  Google Scholar 

  • Fuhrmann, M., Oertel, W., & Hegemann, P. (1999). A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant Journal, 19, 353–361.

    Article  Google Scholar 

  • Gan, S. Y., Qin, S., Othman, R. Y., et al. (2003). Transient expression of lacZ in particle bombarded Gracilaria changii (Gracilariales, Rhodophyta). Journal of Applied Phycology, 15, 345–349.

    Article  Google Scholar 

  • Geng, D., Wang, Y., Wang, P., et al. (2003). Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). Journal of Applied Phycology, 15, 451–456.

    Article  Google Scholar 

  • Goldstein, J. L., DeBose-Boyd, R. A., & Brown, M. S. (2006). Protein sensors for membrane sterols. Cell, 124, 35–36.

    Article  Google Scholar 

  • Gong, Y., Guo, X., Wan, X., et al. (2011). Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum. Journal of Basic Microbiology, 51, 666–672.

    Article  Google Scholar 

  • Gressel, J., van der Vlugt, C. J. B., & Bergmans, H. E. N. (2013). Environmental risks of large scale cultivation of microalgae: Mitigation of spills. Algal Research, 2, 286–298.

    Article  Google Scholar 

  • Gressel, J., van der Vlugt, C. J. B., & Bergmans, H. E. N. (2014). Cultivated microalgae spills: Hard to predict/easier to mitigate risks. Trends in Biotechnology, 32, 65–69.

    Article  Google Scholar 

  • Guarnieri, M. T., Nag, A., Smolinski, S. L., et al. (2011). Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS ONE, 6(10), e25851.

    Article  Google Scholar 

  • Guckert, J. B., & Cooksey, K. E. (1990). Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. Journal of Phycology, 26, 72–79.

    Article  Google Scholar 

  • Guo, S., Zhao, X., Tang, Y., et al. (2013). Establishment of an efficient genetic transformation system in Scenedesmus obliquus. Journal of Biotechnology, 163, 61–68.

    Article  Google Scholar 

  • Hallmann, A. (2007). Algal transgenics and biotechnology. Transgenic Plant Journal, 1, 81–98.

    Google Scholar 

  • Hamilton, M. L., Haslam, R. P., Napier, J. A., & Sayanova, O. (2014). Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metabolic Engineering, 22, 3–9.

    Article  Google Scholar 

  • Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251.

    Article  Google Scholar 

  • Hawkins, R. L., & Nakamura, M. (1999). Expression of human growth hormone by the eukaryotic alga, Chlorella. Current Microbiology, 38, 335–341.

    Article  Google Scholar 

  • Hempel, F., Lau, J., Klingl, A., & Maier, U. G. (2011). Algae as protein factories: Expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS ONE, 6(12), e28424.

    Article  Google Scholar 

  • Henley, W. J., Litaker, R. W., Novoveska, L., et al. (2013). Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Research, 2, 66–77.

    Article  Google Scholar 

  • Hitoshi, S. (2005). Lipid synthetic transcription factor, SREBP. Nippon rinsho. Japanese Journal of Clinical Medicine, 63, 897–907.

    Google Scholar 

  • Hou, Q., Qiu, S., Liu, Q., et al. (2013). Selenoprotein-transgenic Chlamydomonas reinhardtii. Nutrients, 5, 624–636.

    Article  Google Scholar 

  • Hu, Q., Sommerfeld, M., Jarvis, E., et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54, 621–639.

    Article  Google Scholar 

  • Ibáñez-Salazar, A., Rosales-Mendoza, S., Rocha-Uribe, A., et al. (2014). Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. Journal of Biotechnology, 184, 27–38.

    Article  Google Scholar 

  • Jain, M., ShragerJ, Harris E. H., et al. (2007). EST assembly supported by a draft genome sequence: An analysis of the Chlamydomonas reinhardtii transcriptome. Nucleic Acids Research, 35, 2074–2083.

    Article  Google Scholar 

  • Jakobiak, T., Mages, W., Scharf, B., et al. (2004). The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri. Protist, 155, 381–393.

    Article  Google Scholar 

  • Jang, Y. S., Park, J. M., Choi, S., et al. (2012). Engineering microorganisms for the production of biofuels and perspective based on systems metabolic engineering approaches. Biotechnology Advances, 30, 989–1000.

    Article  Google Scholar 

  • Jiang, P., Qin, S., & Tseng, C. K. (2003). Expression of the lacZ reporter gene in sporophytes of the seaweeds Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Reports, 21, 1211–1216.

    Article  Google Scholar 

  • Kathiresan, S., Chandrashekar, A., Ravishankar, G. A., & Sarada, R. (2009). Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). Journal of Phycology, 45, 642–649.

    Article  Google Scholar 

  • Khan, H., Parks, N., Kozera, C., Curtis, B. A., et al. (2007). Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: Lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Molecular Biology and Evolution, 24, 1832–1842.

    Article  Google Scholar 

  • Kilian, O., Benemann, C. S. E., Niyogi, K. K., & Vick, B. (2011). High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. PNAS, 108, 21265–21269.

    Article  Google Scholar 

  • Kim, D., Kim, Y. T., Cho, J. J., et al. (2002). Stable integration and functional expression of flounder growth hormone gene in transformed microalgae Chlorella ellipsoidea. Marine Biotechnology, 4, 63–73.

    Article  Google Scholar 

  • Kim, T. Y., Sohn, S. B., Kim, H. U., & Lee, S. Y. (2008). Strategies for systems-level metabolic engineering. Biotechnology Journal, 3, 612–623.

    Article  Google Scholar 

  • Kindle, K. L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. PNAS, 87, 1228–1232.

    Article  Google Scholar 

  • Kindle, K. L., Schnell, A., Fernández, E., & Lefebvre, A. (1989). Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. Journal of Cell Biology, 109, 2589–2601.

    Article  Google Scholar 

  • Klein, T. M., Wolf, E. D., Wu, R., & Sanford, J. C. (1987). High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327, 70–73.

    Article  Google Scholar 

  • Kleinováa, A., Cvengrošováa, Z., Rimarčíka, J., et al. (2012). Biofuels from algae. Procedia Engineering, 42, 231–238.

    Article  Google Scholar 

  • Kotzka, J., Knebel, B., Avci, H., et al. (2010). Phosphorylation of sterol regulatory element-binding protein (SREBP)-1a links growth hormone action to lipid metabolism in hepatocytes. Atherosclerosis, 213, 156–165.

    Article  Google Scholar 

  • Kumar, S. V., Misquitta, R. W., Reddy, V. S., et al. (2004). Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science, 166, 731–738.

    Article  Google Scholar 

  • Lapidot, M., Raveh, D., Sivan, A., et al. (2002). Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiology, 129, 7–12.

    Article  Google Scholar 

  • Lei, A., Chen, H., Shen, G., et al. (2012). Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnology Biofuel, 5, 18.

    Article  Google Scholar 

  • Leon-Banares, R., Gonzales-Ballester, Galvan A., & Fernandez, E. (2004). Transgenic microalgae as green cell-factories. Trends in Biotechnology, 22, 45–52.

    Article  Google Scholar 

  • Leόn, R., Couso, I., & Fernandez, E. (2007). Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 130, 143–152.

    Article  Google Scholar 

  • Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199–211.

    Article  Google Scholar 

  • Li, Y., Han, D., Hu, G., et al. (2010a). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12, 387–391.

    Article  Google Scholar 

  • Li, J., Lu, Y. M., Xue, L. X., & Xie, H. (2010b). A structurally novel salt-regulated promoter of duplicated carbonic anhydrase gene 1 from Dunaliella salina. Molecular Biology Reports, 37, 1143–1154.

    Article  Google Scholar 

  • Liu, X., Brune, D., Vermaas, W., & Curtiss, R. (2010). Production and secretion of fatty acids in genetically engineered cyanobacteria. PNAS, 107, 13189.

    Article  Google Scholar 

  • Liu, X., Sheng, J., & Curtiss, R. (2011). Fatty acid production in genetically modified cyanobacteria. PNAS, 108, 6899–6904.

    Article  Google Scholar 

  • Liu, J., Sun, Z., Gerken, H., et al. (2014). Genetic engineering of the green alga Chlorella zofingiensis: A modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Applied Microbiology and Biotechnology, 98, 5069–5079.

    Article  Google Scholar 

  • Lohr, M., Im, C. S., & Grosman, A. R. (2005). Genome-Based examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii. Plant Physiology, 138, 490–515.

    Article  Google Scholar 

  • Lohuis, T., Michael, R., & David, M. (1998). Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): Expression of GUS in microalgae using heterologous promoter constructs. Plant Journal, 13, 427–435.

    Article  Google Scholar 

  • Lommer, M., Specht, M., Roy, A. S., et al. (2012). Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biology, 13(7), R66. doi:10.1186/Gb-2012-13-7-R66.

    Google Scholar 

  • Lu, Y. M., Li, J., Xue, L. X., et al. (2011). A duplicated carbonic anhydrase 1(DCA1) promoter mediates the nitrate reductase gene switch of Dunaliella salina. Journal of Applied Phycology, 23, 673–680.

    Article  Google Scholar 

  • Lumbreras, V., Stevens, D. R., & Purton, S. (1998). Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant Journal, 14, 441–447.

    Article  Google Scholar 

  • Manimaran, P., Ramkumar, G., Sakthivel, K., et al. (2011). Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: Present status and future prospects. Biotechnology Advances, 29, 703–714.

    Article  Google Scholar 

  • Matsunaga, T., Takeyama, H., & Nakamura, N. (1990). Characterization of cryptic plasmids from marine cyanobacteria and construction of a hybrid plasmid potentially capable of transformation of marine cyanobacterium, Synechococcus sp. and its transformation. Applied Biochemistry and Biotechnology, 24(25), 151–160.

    Article  Google Scholar 

  • Matsuzaki, M., Misumi, O., Shin, I. T., et al. (2004). Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428(6983), 653–657.

    Article  Google Scholar 

  • Maul, J. E., Lilly, J. W., Cui, L., et al. (2002). The Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats. Plant Cell, 14, 2659–2679.

    Article  Google Scholar 

  • Mayfield, S. P., Franklin, S. E., & Lerner, R. A. (2003). Expression and assembly of a fully active antibody in algae. PNAS, 100, 438–442.

    Article  Google Scholar 

  • Melis, A., Seibert, M., & Ghirardi, M. L. (2007). Hydrogen fuel production by transgenic microalgae. Advances in Experimental Medicine and Biology, 616, 110–121.

    Article  Google Scholar 

  • Men, S., Ming, X., Wang, Y., et al. (2003). Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell, Tissue and Organ Culture, 75, 63–71.

    Article  Google Scholar 

  • Merchant, S. S., Prochnik, S. E., Vallon, O., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318, 245–250.

    Article  Google Scholar 

  • Miller, R., Wu, G., Deshpande, R. R., et al. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154, 1737–1752.

    Article  Google Scholar 

  • Miyagawa, A., Okami, T., Kira, N., et al. (2009). Research note: High efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis. Phycological Research, 57, 142–146.

    Article  Google Scholar 

  • Miyagawa, A., Okami, T., Kira, N., et al. (2011). Stable nuclear transformation of the diatom Chaetoceros sp. Phycological Research, 59, 113–119.

    Article  Google Scholar 

  • Moreno-Risueno, M. A., Martinez, M., Vicente-Carbajosa, J., & Carbonero, P. (2007). The family of DOF transcription factors: From green unicellular algae to vascular plants. Molecular Genetics and Genomics, 277, 379–390.

    Article  Google Scholar 

  • Moseley, J., Chang, C. W., & Grossman, A. R. (2006). Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryotic Cell, 5, 26–44.

    Article  Google Scholar 

  • Mu, J., Tan, H., Zheng, Q., et al. (2008). LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiology, 148, 1042–1054.

    Article  Google Scholar 

  • Muravenko, O. V., Selyakh, I. O., Kononenko, N. V., & Stadnichuk, I. N. (2001). Chromosome numbers and nuclear DNA contents in the red microalgae Cyanidium caldarium and three Galdieria species. European Journal of Phycology, 36, 227–232.

    Article  Google Scholar 

  • Nickelsen, J. (1999). Transcripts containing the 5′ untranslated regions of the plastid genes psbA and psbB from higher plants are unstable in Chlamydomonas reinhardtii chloroplasts. Molecular and General Genetics, 262, 768–771.

    Article  Google Scholar 

  • Nickelsen, J., Fleischmann, M., Boudreau, E., et al. (1999). Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas reinhardtii. Plant Cell, 11, 957–970.

    Article  Google Scholar 

  • Niu, Y. F., Zhang, M. H., Xie, W. H., et al. (2011). A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genetics and Molecular Research, 10, 3427–3434.

    Article  Google Scholar 

  • Ohresser, M., Matagne, R. F., & Loppes, R. (1997). Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Current Genetics, 31, 264–271.

    Article  Google Scholar 

  • Oudot-Le Secq, M. P., Grimwood, J., Shapiro, H., et al. (2007). Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: Comparison with other plastid genomes of the red lineage. Molecular Genetics and Genomics, 277, 427–439.

    Article  Google Scholar 

  • Palenik, B., Grim wood, J., Aerts, J., et al. (2007). The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS, 104, 7705–7710.

    Article  Google Scholar 

  • Pan, K., Qin, J. J., Li, S., et al. (2011). Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. Journal of Phycology, 47, 1425–1432.

    Article  Google Scholar 

  • Pancha, I., Chokshi, K., George, B., et al. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146–154.

    Article  Google Scholar 

  • Park, J. M., Kim, T. Y., & Lee, S. Y. (2009). Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnology Advances, 27, 978–988.

    Article  Google Scholar 

  • Park, J. M., Kim, T. Y., & Lee, S. Y. (2010). Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. PNAS, 107, 14931–14936.

    Google Scholar 

  • Porstmann, T., Griffiths, B., Chung, Y. L., et al. (2005). SREBP PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene, 24, 6465–6481.

    Google Scholar 

  • Poulsen, N., Chesley, P. M., & Kroger, N. (2006). Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology, 42, 1059–1065.

    Article  Google Scholar 

  • Poulsen, N., & Kröger, N. (2005). A new molecular tool for transgenic diatoms—Control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS Journal, 272, 3413–3423.

    Article  Google Scholar 

  • Prieto, R., Dubus, A., Galván, A., & Fernáandez, E. (1996). Isolation and characterization of two new negative regulatory mutants for nitrate assimilation in Chlamydomonas reinhardtii obtained by insertional mutagenesis. Molecular and General Genetics, 251, 461–471.

    Google Scholar 

  • Prochnik, S. E., Umen, J., Nedelcu, A. M., et al. (2010). Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science, 329(5988), 223–226.

    Article  Google Scholar 

  • Purton, S., & Rochaix, J. D. (1995). Characterisation of the ARG7 gene of Chlamydomonas reinhardtii and its application to nuclear transformation. European Journal of Phycology, 30, 141–148.

    Article  Google Scholar 

  • Qin, S., Lin, H., & Jiang, P. (2012). Advances in genetic engineering of marine algae. Biotechnology Advances, 30, 1602–1613.

    Article  Google Scholar 

  • Radakovits, R., Jinkerson, R. E., Fuerstenberg, S. I., et al. (2012). Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nature Communications, 3, 686.

    Article  Google Scholar 

  • Rae, J. L., & Levis, R. A. (2002). Single-cell electroporation. European Journal of Physiology, 443, 664–670.

    Article  Google Scholar 

  • Read, B. A., Kegel, J., Klute, M. J., et al. (2013). Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499(7457), 209–213.

    Article  Google Scholar 

  • Reik, A., Zhou, Y., Collingwood, T. N., et al. (2007). Enhanced protein production by engineered zinc finger proteins. Biotechnology and Bioengineering, 97, 1180–1189.

    Article  Google Scholar 

  • Riaño-Pachón, D. M., Correa, L. G. G., Trejos-Espinosa, R., & Mueller-Roeber, B. (2008). Green transcription factors: A Chlamydomonas overview. Genetics, 179, 31–39.

    Article  Google Scholar 

  • Rochaix, J.-D. (1995). Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 29, 209.

    Article  Google Scholar 

  • Rochaix, J.-D. (2002). The three genomes of Chlamydomonas. Photosynthesis Research, 73, 285–293.

    Article  Google Scholar 

  • Roessler, K., Shintani, D., Savage, L., et al. (1997). Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiology, 113, 75–81.

    Article  Google Scholar 

  • Rohr, J., Sarkar, N., Balenger, S., et al. (2004). Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant Journal, 40, 611–621.

    Article  Google Scholar 

  • Russa, M. L., Bogen, C., Uhmeyer, A., et al. (2012). Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 162, 13–20.

    Article  Google Scholar 

  • Salvador, M. L., Klein, U., & Bogorad, L. (1993). 5′ sequences are important positive and negative determinants of the longevity of Chlamydomonas chloroplast gene transcripts. PNAS, 90, 1556–1560.

    Article  Google Scholar 

  • Sanchez Puerta, M. V., Bachvaroff, T. R., & Delwiche, C. F. (2005). The complete plastid genome sequence of the haptophyte Emiliania huxleyi: A comparison to other plastid genomes. DNA Research, 12, 151–156.

    Article  Google Scholar 

  • Santos-Mendoza, M., Dubreucq, B., Baud, S., et al. (2008). Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant Journal, 54, 608–620.

    Article  Google Scholar 

  • Schellenberger, J., Park, J. O., Conrad, T. M., & Palsson, B. O. (2010). BiGG: A biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics, 11, 213.

    Article  Google Scholar 

  • Schiedlmeier, B., Schmitt, R., Muller, W., et al. (1994). Nuclear transformation of Volvox carteri. PNAS, 91, 5080–5084.

    Article  Google Scholar 

  • Schroda, M. (2006). RNA silencing in Chlamydomonas: Mechanisms and tools. Current Genetics, 49, 69–84.

    Article  Google Scholar 

  • Schroda, M., Blocker, D., & Beck, C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant Journal, 21, 121–131.

    Article  Google Scholar 

  • Scoma, A., Krawietz, D., Faraloni, C., et al. (2012). Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. Journal of Biotechnology, 157, 613–619.

    Article  Google Scholar 

  • Segal, D. J., Stege, J. T., & Barbas, C. F, I. I. I. (2003). Zinc fingers and a green thumb: Manipulating gene expression in plants. Current Opinion in Plant Biology, 6, 163–168.

    Article  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the US Department of Energy’s Aquatic Species Program—biodiesel from algae. Report no. NREL/TP-580–24190. National Renewable Energy Laboratory, Golden, Colorado.

    Google Scholar 

  • Shimogawara, K., Fujiwara, S., Grossman, A., & Usuda, H. (1998). High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics, 148, 1821–1828.

    Google Scholar 

  • Shimogawara, K., Wykoff, D. D., Usuda, H., & Grossman, A. R. (1999). Chlamydomonas reinhardtii mutants abnormal in their responses to phosphorus deprivation. Plant Physiology, 120, 1–10.

    Article  Google Scholar 

  • Shrager, J., Hauser, C., Chang, C. W., et al. (2003). Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiology, 131, 401–408.

    Article  Google Scholar 

  • Simionato, D., Block, M. A., La Rocca, N., et al. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryotic Cell, 12, 665–676.

    Article  Google Scholar 

  • Sindelar, G., & Wendisch, V. F. (2007). Improving lysine production by Corynebacterium glutamicum through microarray-based identification of novel target genes. Applied Microbiology and Biotechnology, 76, 677–689.

    Article  Google Scholar 

  • Sizova, I., Fuhrmann, M., & Hegemann, P. (2011). A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene, 277, 221–229.

    Article  Google Scholar 

  • Smith, D. R., Lee, R. W., Cushman, J. C., et al. (2010). The Dunaliella salina organelle genomes: Large sequences, inflated with intronic and intergenic DNA. BMC Plant Biology, 10, 83.

    Article  Google Scholar 

  • Sode, K., Tatara, M., Takeyama, H., et al. (1992). Conjugative gene transfer in marine cyanobacteria: Synechococcus sp., Synechocystis sp. and Pseudanabaena sp. Applied Microbiology and Biotechnology, 37, 369–373.

    Article  Google Scholar 

  • Stachel, S. E., Messens, E., VanMontagu, M., & Zambryski, P. (1985). Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318, 624–629.

    Article  Google Scholar 

  • Stephanopoulos, G. N., Aristidou, A. A., & Nielsen, J. (1998). Metabolic engineering: Principles and methodologies. San Diego, CA: Academic Press.

    Google Scholar 

  • Stephanopoulos, G., & Sinskey, A. J. (1993). Metabolic engineering—Methodologies and future prospects. Trends in Biotechnology, 11, 392–396.

    Article  Google Scholar 

  • Stevens, S. E, Jr, Randy, C. M., Lamoreaux, W. J., & Coons, L. B. (1994). A genetically engineered mosquitocidal cyanobacterium. Journal of Applied Phycology, 6, 187–197.

    Article  Google Scholar 

  • Stevens, D. R., Rochaix, J. D., & Purton, S. (1996). The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Molecular and General Genetics, 251, 23–30.

    Google Scholar 

  • Sun, M., Qian, K., Su, N., et al. (2003). Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnology Letters, 25, 1087–1092.

    Article  Google Scholar 

  • Sun, Y., Yang, Z., Gao, X., et al. (2005). Expression of foreign genes in Dunaliella by electroporation. Molecular Biotechnology, 30, 185–192.

    Article  Google Scholar 

  • Tam, L. W., & Lefebvre, P. A. (1993). Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics, 135, 375–384.

    Google Scholar 

  • Tan, C., Qin, S., Zhang, Q., et al. (2005). Establishment of a micro-particle bombardment transformation system for Dunaliella salina. Journal of Microbiology, 43, 361–365.

    Google Scholar 

  • Tan, H., Yang, X., Zhang, F., et al. (2011). Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiology, 156, 1577–1588.

    Article  Google Scholar 

  • Thelen, J. J., & Ohlrogge, J. B. (2002). Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering, 4, 12–21.

    Article  Google Scholar 

  • Todd, B. L., Stewart, E. V., Burg, J. S., et al. (2006). Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Molecular and Cellular Biology, 26, 2817–2831.

    Article  Google Scholar 

  • Tolonen, A. C., Liszt, G. B., & Hess, W. R. (2006). Genetic manipulation of Prochlorococcus strain MIT9313: Green fluorescent protein expression from an RSF1010 plasmid and Tn5 transposition. Applied and Environment Microbiology, 72, 7607–7613.

    Article  Google Scholar 

  • Toyomizu, M., Suzuki, K., Kawata, Y., et al. (2001). Effective transformation of the cynobacterium Spirulina platensis using electroporation. Journal of Applied Phycology, 13, 209–214.

    Article  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2009). The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. Molecular Biology and Evolution, 26, 2317–2331.

    Article  Google Scholar 

  • Wakasugi, T., Nagai, T., Kapoor, M., et al. (1997). Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. PNAS, 94, 5967–5972.

    Article  Google Scholar 

  • Wang, Z. T., Ullrich, N., Joo, S., et al. (2009). Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starch-less Chlamydomonas reinhardtii. Eukaryotic Cell, 8, 1856–1868.

    Article  Google Scholar 

  • Wang, H. W., Zhang, B., Hao, Y. J., et al. (2007). The soybean Dof-type transcription factor genes, GmDof4 and GmDof11 Enhanced lipid content in the seeds of transgenic Arabidopsis plants. Plant Journal, 52, 716–729.

    Article  Google Scholar 

  • Worden, A. Z., Lee, J. H., Mock, T., et al. (2009). Micromonas sp. RCC299 chloroplast, complete genome. http://www.ncbi.nlm.nih.gov/nuccore/FJ858267

  • Wu, S., Xu, L., Huang, R., & Wang, Q. (2011). Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresource Technology, 102, 2610–2616.

    Article  Google Scholar 

  • Wu-Scharf, D., Jeong, B. R., Zhang, C., & Cerutti, H. (2000). Transgene and transposon silencing in Chlamydomonas by a DEAH-Box RNA helicase. Science, 290, 1159–1162.

    Article  Google Scholar 

  • Wykoff, D., Davies, J., & Grossman, A. R. (1998). The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology, 117, 129–139.

    Article  Google Scholar 

  • Yang, F., & Cao, Y. (2012). Biosynthesis of phloroglucinol compounds in microorganisms—Review. Applied Microbiology and Biotechnology, 93, 487–495.

    Article  Google Scholar 

  • Zambre, M., Terryn, N., Clercq, J. D., et al. (2003). Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta, 216, 580–586.

    Google Scholar 

  • Zaslavskaia, L. A., Lippmeier, J. C., Kroth, P. G., et al. (2000). Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. Journal of Phycology, 36, 379–386.

    Article  Google Scholar 

  • Zhang, L., Happe, T., & Melis, A. (2002). Biochemical and morphological characterization of sulfur-deprived and H—Producing Chlamydomonas reinhardtii (green alga). Planta, 214, 552–561.

    Article  Google Scholar 

  • Zhang, Z., Shrager, J., Chang, C. W., et al. (2004). Insights into the survival of Chlamydomonas reinhardtii during sulphur starvation based on microarray analysis of gene expression. Eukaryotic Cell, 3, 1331–1348.

    Article  Google Scholar 

  • Zhao, R., Cao, Y., Xu, H., et al. (2011). Analysis of expressed sequence TAGS from the green alga Dunaliella salina (Chlorophyta). Journal of Phycology, 47, 1454–1460.

    Article  Google Scholar 

  • Zhao, T., Wang, W., Bai, X., & Qi, Y. (2009). Gene silencing by artificial microRNAs in Chlamydomonas. Plant Journal, 58, 157–164.

    Article  Google Scholar 

Download references

Acknowledgements

The following grants supported research that contributed to this chapter: HICoE MOE: IOES-2014F and UM-QUB 2A-2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siew-Moi Phang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gan, SY., Lim, PE., Phang, SM. (2016). Genetic and Metabolic Engineering of Microalgae. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics