Skip to main content

Major Commercial Products from Micro- and Macroalgae

  • Chapter
  • First Online:
Algae Biotechnology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Macro- and microalgae are used in a variety of commercial products with many more in development. This chapter outlines the major products, species used, methods of production, extraction, and processing as well as market sizes and trends. Foods, nutraceuticals, and feeds are the major commercial products from algae. Well-known culinary products include Nori, Wakame, Kombu and Dulse, from whole macroalgal biomass. The microalgae Spirulina and Chlorella have been widely marketed as nutritional supplements for both humans and animals. Several microalgae with a high nutritional value and energy content are grown commercially as aquaculture feed. The major processed products from macroalgae are the hydrocolloids, including carrageenan, agars, and alginates, used as gelling agents in a variety of foods and healthcare products. Pigments extracted from algae include β-carotene, astaxanthin, and phycobiliproteins. These are generally used as food colorants, as additives in animal feed or as nutraceuticals for their antioxidant properties (Radmer in Bioscience 46:263–270, 1996; Pulz and Gross in Applied Microbiology and Biotechnology 65:635–648, 2004). Polyunsaturated fatty acids (PUFAs) are another high value product derived from microalgae. Other potential products include fertilizers, fuels, cosmetics and chemicals. Algae also have application in bioremediation and CO2 sequestration, as well as producing many interesting bioactive compounds. Algae have great potential to produce a wide range of valuable compounds, beyond their current exploitation. To date, commercialization of new products has been slow (Milledge in Reviews in Environmental Science and Biotechnology 10:31–41, 2011; Wijffels in Trends in Biotechnology 26:26–31, 2007; Radmer in Bioscience 46:263–270, 1996; Pulz and Gross in Applied Microbiology and Biotechnology 65:635–648, 2004; Spolaore et al. in Journal of Bioscience and Bioengineering 101(2):87–96, 2006), however, microalgal biotechnology is a relatively new industry, and therefore, it is unsurprising that significant challenges remain to be solved. The advantages associated with algal production are likely to ensure that efforts continue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalde, J., Betancourt, L., Torres, E., Cid, A., & Barwell, C. (1998). Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. 109201. Plant Science, 136, 109–120.

    Article  Google Scholar 

  • Agostoni, P. G., Marenzi, G. C., & Ganzerla, P. (1995). Lung-heart interaction as a substrate for the improvement in exercise capacity after body fluid volume depletion in moderate congestive heart failure. The American Journal of Cardiology, 76, 793–798.

    Article  Google Scholar 

  • Allmendinger, A., Spavieri, J., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., et al. (2010). Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three British and Irish red algae. Phytotherapy Research, 24, 1099–1103.

    Google Scholar 

  • Apt, K. E., & Behrens, P. W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35(2), 215–226.

    Article  Google Scholar 

  • Baracos, V. E., Mazurak, V. C., & David, W. L. (2004). n-3 polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutrition Research Reviews, 17, 177–192.

    Article  Google Scholar 

  • Barclay, W. R., Meager, K. M., & Abril, J. R. (1994). Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology, 6, 123–129.

    Article  Google Scholar 

  • Belarbi, E. H., Molina, E., & Chisti, Y. (1999). A process for high yield and scaleable recovery of high purity eicosapentenoic acid esters from microalgae and fish oil. Enzyme Microbiology and Technology, 26, 516–529.

    Article  Google Scholar 

  • Belay, A. (1997). Mass culture of Spirulina (Arthrospira) outdoors—The Earthrise Farms Experience. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology (pp. 131–158). London: Taylor and Francis.

    Google Scholar 

  • Ben-Amotz, A. (1999). Production of-carotene from Dunaliella. In Z. Cohen (Ed.), Chemicals from microalgae (pp. 196–204). New York: CRC Press.

    Google Scholar 

  • Benemann, J. R. (2000). Hydrogen production by microalgae. Journal of Applied Phycology, 12, 291–300.

    Article  Google Scholar 

  • Berge, J., Gouygou, J., Dubacq, J., & Durand, P. (1995). Reassessment of lipid composition of the diatom Skelotenema costatum. Phytochemistry, 39(5), 1017–1021.

    Article  Google Scholar 

  • Bermejo, R., Felipe, M., Talavera, E., & Alvarez-Pez, J. (2006). Expanded bed adsorption chromatography for recovery of phycocyanins from the microalga Spirulina platensis. Chromatographia, 63, 59–66.

    Article  Google Scholar 

  • Bhadury, P., & Wright, P. C. (2004). Exploitation of Marine Algae: Biogenic compounds for potential antifouling applications. Planta, 219(4), 561–578.

    Article  Google Scholar 

  • Bhatnagar, I., & Kim, S. (2010). Immense essence of excellence: Marine microbial bioactive compounds. Marine Drugs, 8, 2673–2701.

    Article  Google Scholar 

  • Borowitzka, M. A. (1992). Algal biotechnology products and processes—matching science and economics. Journal of Applied Phycology, 4, 267–279.

    Article  Google Scholar 

  • Borowitzka, M. A. (1997). Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology, 9(5), 393–401.

    Article  Google Scholar 

  • Brett, M. T., Müller-Navarra, D. C., & Gulati, R. D. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38, 483–499.

    Article  Google Scholar 

  • Burja, A. M., Banaigs, B., Abou-Mansour, E., Burgess, J. G., & Wright, P. C. (2001). Marine cyanobacteria-a prolific source of natural products. Tetrahedron, 57, 9347–9377.

    Article  Google Scholar 

  • Bux, F. (Ed.). (2013). Biotechnological applications of microalgae: Biodiesel and value added products. Florida: Taylor Francis Group.

    Google Scholar 

  • Chen, F., & Zhang, Y. (1997). High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 20, 221–224.

    Article  Google Scholar 

  • Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology, 167(3), 201–214.

    Article  Google Scholar 

  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Chidambara Murthy, K. N., & Ravishankar, G. (2005). Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science and Technology, 16(9), 389–406.

    Article  Google Scholar 

  • Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80, 1–14.

    Article  Google Scholar 

  • Falch, B. S., Koenig, G. M., Wright, A. D., Sticher, O., Ruegger, H., & Bernardinelli, G. (1992). Ambigol A and B: new biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella ambigua. The Journal of Organic Chemistry, 58(24), 6570–6575.

    Article  Google Scholar 

  • Fon Sing, S., Isdepsky, A., Borowitzka, M., & Lewis, D. M. (2014). Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production. Bioresource Technology, 161, 47–54.

    Article  Google Scholar 

  • Gerwick, W. H., Tan, L.T., & Sitachitta, N. (2001). Nitrogen-containing metabolites from marine cyanobacteria. In: G. A. Cordell, (Ed.), The Alkaloids: Chemistry and Biology 57, 75–184.

    Google Scholar 

  • Guschina, I. A., & Harwood, J. (1996). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160–186.

    Article  Google Scholar 

  • Gustafson, K. R., Cardellina, J. H., Fuller, R. W., Wieslow, O. S., Kiser, R. F., Sander, K. M., et al. (1989). AIDS antiviral sulfolipids from cyanobacteria (blue-green algae). Journal of the National Cancer Institute, 81, 1254–1258.

    Article  Google Scholar 

  • Harrison, S. T. L., Richardson, C., & Griffiths, M. J. (2013). Analysis of microalgal biorefineries for bioenergy from an environmental and economic perspective focus on algal biodiesel. In F. Bux (Ed.), Biotechnological Applications of Microalgae: Biodiesel and Value-Added Products (pp. 113–136). Boca Raton: CRC Press. ISBN 978-146-651-529-1.

    Chapter  Google Scholar 

  • Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14(3), 1037–1047.

    Article  Google Scholar 

  • Hurdato, A. Q. (2014). Developments in production technology of Kappaphycus in the Phillipines: more than four decades of farming. In Paper presented at the 5th Congress of the International Society for Applied Phycology, Australia Technology Park, Sydney, 22–27 June 2014.

    Google Scholar 

  • Jensen, A. (1993). Present and future needs for algae and algal products. In A. R. O. Chapman, M. T. Brown, & M. Lahaye, (Eds.), Developments in Hydrobiology, Vol. 85, pp. 15–23.

    Google Scholar 

  • Jordan, M., & Wislon, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.

    Article  Google Scholar 

  • Judé, S., Roger, S., Martel, E., Besson, P., Richard, S., Bougnoux, P., et al. (2006). Dietary long-chain omega-3 fatty acids of marine origin: A comparison of their protective effects on coronary heart disease and breast cancers. Progress in Biophysics and Molecular Biology, 90(1–3), 299–325.

    Article  Google Scholar 

  • Kathiresan, S., Sarada, R., Bhattacharya, S., & Ravishankar, G. A. (2007). Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnology and Bioengineering, 96(3), 456–463.

    Article  Google Scholar 

  • Khatoon, H., Banerjee, S., Yusoff, F. M., & Shariff, M. (2009). Evaluation of indigenous marine periphytic Amphora, Navicula and Cymbella grown on substrate as feed supplement in Penaeus monodon postlarval hatchery system. Aquaculture Nutrition, 15(2), 186–193.

    Article  Google Scholar 

  • Kim, S. K., Dominic-Ravichandran, Y., Khan, S. B., & Kim, Y. T. (2008). Prospective of the cosmeceuticals derived from marine organisms. Biotechnoogy and Bioprocess Engineering, 13, 511–523.

    Article  Google Scholar 

  • Kris-Etherton, P. M., Harris, W. S., & Appel, I. J. (2003). Omega-3 fatty acids and cardiovascular disease. New Recommendations from the American Heart Association, 23(2), 151–152.

    Google Scholar 

  • Mata, T. M., Martins, A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  Google Scholar 

  • Merrill, J. E. (1993). Development of nori markets in the western world. Journal of Applied Phycology, 5(2), 149–154.

    Article  Google Scholar 

  • Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17, 477–489.

    Article  Google Scholar 

  • Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846.

    Article  Google Scholar 

  • Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science and Biotechnology, 10, 31–41.

    Article  Google Scholar 

  • Mita, A. C., Hammond, L. A., Bonate, P. L., Weiss, G., McCreery, H., Syed, S., et al. (2006). Phase I and pharmacokinetic study of tasidotin hydrochloride (ILX651), a third-generation dolastatin-15 analogues, administered weekly for 3 weeks every 28 days in patients with advanced solid tumours. Clinical Cancer Research, 12, 5207–5215.

    Article  Google Scholar 

  • Moheimani, N. R., Cord-Ruwisch, R., Raes, E., & Borowitzka, M. (2013). Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). Journal of Applied Phycology, 25(6), 1653–1661.

    Article  Google Scholar 

  • Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology, 12(3–5), 527–534.

    Article  Google Scholar 

  • Murphy, V., Hughes, H., & McLoughlin, P. (2008). Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere, 70(6), 128–134.

    Article  Google Scholar 

  • Naidoo, K., Maneveldt, G., Ruck, K., & Bolton, J. J. (2006). A comparison of various seaweed-based diets and formulated feed on growth rate of abalone in a land-based aquaculture system. Journal of Applied Phycology, 18(3–5), 437–443.

    Article  Google Scholar 

  • Nakas, J. P., Schaedle, M., Parkinson, C. M., Coonley, C. E., & Tanenbaum, S. W. (1983). System development for linked-fermentation production of solvents from algal biomass. Applied and Environmental Microbiology, 46(5), 1017–1023.

    Google Scholar 

  • Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., et al. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017–1024.

    Article  Google Scholar 

  • Niu, J., Wang, G., Lin, X., & Zhou, B. (2007). Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. Journal of Chromatography B, 850, 267–276.

    Article  Google Scholar 

  • Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering, 20, 459–466.

    Article  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648.

    Article  Google Scholar 

  • Radmer, R. J. (1996). Algal diversity and commercial algal products. BioScience, 46(4), 263–270.

    Article  Google Scholar 

  • Rasala, B., & Mayfield, S. P. (2014). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123, 227–239.

    Article  Google Scholar 

  • Rawdan, S. S. (1991). Sources of c20- polyunsaturated fatty acids for biotechnological use. Applied Microbiology and Biotechnology, 35, 421–430.

    Google Scholar 

  • Rickards, R. W., Rothschild, J. M., Willis, A. C., de Chazal, N. M., Kirk, J., Kirk, K., et al. (1999). Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 55, 13513.

    Article  Google Scholar 

  • Running, J. A., Huss, R. J., & Olson, P. T. (1994). Heterotrophic production of ascorbic acid by microalgae. Journal of Applied Phycology, 6(2), 99–104.

    Article  Google Scholar 

  • Sarada, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp.: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34, 795–801.

    Article  Google Scholar 

  • Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. Journal of Applied Phycology, 20, 113–136.

    Article  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J. R., Roessler, P. (1998). A look back at the US Department of Energy’s Aquatic Species Program: Biodiesel from algae, National Renewable Energy Laboratory.

    Google Scholar 

  • Simmons, T. L., Engene, N., Ureña, L. D., Romero, L. I., Ortega-Barría, E., Gerwick, L., & Gerwick, W. H. (2008). Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-Viridis. Journal of Natural Products, 71, 1544–1550.

    Article  Google Scholar 

  • Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 26, 495–505.

    Article  Google Scholar 

  • Singh, S., Kate, B. N., & Banerjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3), 73–95.

    Article  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  Google Scholar 

  • Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68, 954–979.

    Article  Google Scholar 

  • Thompson, G. A. (1996). Lipids and membrane function in green algae. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 130(1), 17–45.

    Article  Google Scholar 

  • Vaughan, V. C., Hassing, R. M., & Lewandowski, P. A. (2013). Marine polyunsaturated fatty acids and cancer therapy. British Journal of Cancer, 108, 486–492.

    Article  Google Scholar 

  • Walker, D. A. (2009). Biofuels, facts, fantasy, and feasibility. Journal of Applied Phycology, 21(5), 509–517.

    Article  Google Scholar 

  • Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry, 40, 3627–3652.

    Article  Google Scholar 

  • Watanabe, T., & Nisizawa, K. (1984). The utilization of Wakame (Undaria pinnatifida) in Japan and manufacture of “haiboshi wakame” and some of its biochemical and physical properties. In C. J. Bird & M. A. Ragan, (eds.), Developments in Hydrobiology, Vol. 22, pp. 106–111.

    Google Scholar 

  • Website: Oilgae (2014). Algae cosmetics. www.oilgae.com/nonfuelproducts/algaecosmetics.html. Accessed 1 August 2014.

  • Wen, Z. Y., & Chen, F. (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21 (4): 273–294

    Google Scholar 

  • Wijffels, R. H. (2007). Potential of sponges and microalgae for marine biotechnology. Trends in Biotechnology, 26(1), 26–31.

    Article  Google Scholar 

  • www.amazon.com. Accessed 5 August 2014.

  • www.made-in-china.com. Accessed 5 August 2014.

  • Yang, H., Lee, E., & Kim, H. (1997). Spirulina platensis inhibits anaphylactic reaction. Life Sciences, 61, 1237–1244.

    Article  Google Scholar 

  • Yongmanitchai, W., & Ward, O. P. (1989). Omega-3 fatty acids: Alternative sources of production. Process Biochemistry, 24, 117–125.

    Google Scholar 

  • Yongmanitchai, W., & Ward, O. P. (1990). Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and Environmental Microbiology, 57(2), 419–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griffiths, M., Harrison, S.T.L., Smit, M., Maharajh, D. (2016). Major Commercial Products from Micro- and Macroalgae. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics