Skip to main content

Microalgae Applications in Wastewater Treatment

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Algal wastewater treatment is effective in the removal of nutrients (C, N and P), coliform bacteria, heavy metals and the reduction of chemical and biological oxygen demand, removal and/or degradation of xenobiotic compounds and other contaminants. Microalgae wastewater treatment technologies have long been in existence; however, uptake of the technology to date has been limited mainly due to considerations of land requirements and volumes of wastewater to be treated. This chapter gives an overview of algal applications in wastewater treatment with specific reference to nutrient removal, phycoremediation of heavy metals, high-rate algal ponds, symbiosis of algae with bacteria for wastewater treatment, and utilisation of wastewater-grown microalgae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-raouf, N., Al-homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19, 257–275.

    Article  Google Scholar 

  • Arbib, Z., Ruiz, J., Álvarez-díaz, P., Garrido-pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143–153.

    Article  Google Scholar 

  • Arceivala, S. J., & Asolekar, S. R. (2007). Wastewater treatment for pollution control and reuse. Noida: Tata McGraw-Hill.

    Google Scholar 

  • Aziz, M. A., & Ng, W. J. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology, 40, 205–208.

    Google Scholar 

  • Babu, B. V., & Gupta, S. (2008). Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption, 14, 85–92.

    Article  Google Scholar 

  • Batista, A. P., Ambrosano, L., Graca, S., Sousa, C., Marques, P. A., Ribeiro, B., et al. (2015). Combining urban wastewater treatment with biohydrogen production—An integrated microalgae-based approach. Bioresource Technology, 184, 230–235.

    Google Scholar 

  • Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271.

    Google Scholar 

  • Bell, W. H., Lang, J. M., & Mitchell, R. (1974). Selective stimulation of marine bacteria by algal extracellular products. Limnology and Oceanography, 19, 833–839.

    Article  Google Scholar 

  • Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45, 5925–5933.

    Article  Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25, 743–756.

    Article  Google Scholar 

  • Braissant, O. (2010). Ammonia toxicity to the brain: Effects on creatine metabolism and transport and protective roles of creatine. Molecular Genetics and Metabolism, 100, S53–S58.

    Article  Google Scholar 

  • Brockett, O. D. (1977). Nitrogenous compounds in facultative oxidation pond sediments. Water Research, 11, 317–321.

    Article  Google Scholar 

  • Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L., & Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50, 3646–3665.

    Article  Google Scholar 

  • Cabanelas, I. T. D., Arbib, Z., Chinalia, F. A., Souza, C. O., Perales, J. A., Almeida, P. F., et al. (2013). From waste to energy: Microalgae production in wastewater and glycerol. Applied Energy, 109, 283–290.

    Article  Google Scholar 

  • Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.

    Google Scholar 

  • Cardozo, K. H., GuaratinI, T., Barros, M. P., Falcao, V. R., Tonon, A. P., Lopes, N. P., CampoS, S., TorreS, M. A., Souza, A. O., Colepicolo, P. & PInto, E. 2007. Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol, 146, 60–78.

    Google Scholar 

  • Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., et al. (2013). Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy, 102, 101–111.

    Article  Google Scholar 

  • Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097–3105.

    Google Scholar 

  • Cho, D. Y., Lee, S. T., Park, S. W., & Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella vulgaris. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 29, 389–409.

    Google Scholar 

  • Cho, S., Lee, N., park, S., Yu, J., Luong, T. T., Oh, Y. K., & Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520.

    Google Scholar 

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015.

    Article  Google Scholar 

  • De Philippis, R., Colica, G., & Micheletti, E. (2011). Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: Molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 92, 697–708.

    Google Scholar 

  • De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38, 4222–4246.

    Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.

    Article  Google Scholar 

  • Dortch, Q., Clayton, J. R., JR., Thoresen, S. S., & Ahmed, S. I. (1984). Species differences in accumulation of nitrogen pools in phytoplankton. Marine Biology, 81, 237–250.

    Google Scholar 

  • Doshi, H., Ray, A., & Kothari, I. L. (2007). Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Current Microbiology, 54, 213–218.

    Google Scholar 

  • Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. Journal of the Marine Biological Association of the United Kingdom, 48, 689–733.

    Article  Google Scholar 

  • Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825–855.

    Article  Google Scholar 

  • Dueñas, J. F., Alonso, J. R., Rey, À. F., & Ferrer, A. S. (2003). Characterisation of phosphorous forms in wastewater treatment plants. Journal of Hazardous Materials, 97, 193–205.

    Article  Google Scholar 

  • Metcalf & Eddy, I., Tchobanoglous, G., & Burton, F. L. (1998). Wastewater engineering: Treatment, disposal and reuse. New Delhi: Tata McGraw-Hill Publishing Company Limited.

    Google Scholar 

  • Flynn, K. J., Fasham, M. J. R., & Hipkin, C. R. (1997). Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philosophical Transactions: Biological Sciences, 352, 1625–1645.

    Article  Google Scholar 

  • Fourest, E., & Volesky, B. (1997). Alginate properties and heavy metal biosorption by marine algae. Applied Biochemistry and Biotechnology, 67, 215–226.

    Article  Google Scholar 

  • Fukami, K., Nishijima, T., & Ishida, Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358, 185–191.

    Article  Google Scholar 

  • García, J., Mujeriego, R., & Hernández-Mariné, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12, 331–339.

    Article  Google Scholar 

  • Goldman, J. C. (1979). Outdoor algal mass cultures—I. Applications Water Research, 13, 1–19.

    Article  Google Scholar 

  • Gonzalez, L. E., & Bashan, Y. (2000). Increased growth of the microalga chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 66, 1527–1531.

    Article  Google Scholar 

  • Green, F. B., Lundquist, T. J., Quinn, N. W., Zarate, M. A., Zubieta, I. X., & Oswald, W. J. (2003). Selenium and nitrate removal from agricultural drainage using the AIWPS technology. Water Science and Technology, 48, 299–305.

    Google Scholar 

  • Gupta, V. K., & Rastogi, A. (2008). Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids and Surfaces B: Biointerfaces, 64, 170–178.

    Article  Google Scholar 

  • Gupta, V. K., Rastogi, A., Saini, V. K., & Jain, N. (2006). Biosorption of copper(II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 296, 59–63.

    Article  Google Scholar 

  • Han, L., Pei, H., Hu, W., Han, F., Song, M., & Zhang, S. (2014). Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresource Technology, 165, 38–41.

    Google Scholar 

  • Hongyang, S., Yalei, Z., Chunmin, Z., Xuefei, Z., & Jinpeng, L. (2011). Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technology, 102(21), 9884–9890.

    Google Scholar 

  • Imase, M., WatanabE, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model. FEMS Microbiology Ecology, 63, 273–282.

    Article  Google Scholar 

  • Ke, H.-Y. D., Anderson, W. L., Moncrief, R. M., Rayson, G. D., & Jackson, P. J. (1994). Luminescence studies of metal ion-binding sites on datura innoxia biomaterial. Environmental Science and Technology, 28, 586–591.

    Article  Google Scholar 

  • Khin, T., & Annachhatre, A. P. (2004). Novel microbial nitrogen removal processes. Biotechnology Advances, 22, 519–532.

    Article  Google Scholar 

  • Klausmeier, C. A., Litchman, E., & Levin, S. A. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 49, 1463–1470.

    Article  Google Scholar 

  • Leadbeater, B. S. C. (2006). The ‘Droop Equation’-Michael droop and the legacy of the ‘Cell-Quota Model’ of phytoplankton growth. Protist, 157, 345–358.

    Article  Google Scholar 

  • Liu, J., Huang, J., Jiang, Y. & Chen, F. 2012. Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol, 107, 393–8.

    Google Scholar 

  • Mahapatra, D., Chanakya, H. N., & Ramachandra, T. V. (2013). Treatment efficacy of algae-based sewage treatment plants. Environmental Monitoring and Assessment, 185, 7145–7164.

    Article  Google Scholar 

  • Munoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research, 40, 2799–2815.

    Article  Google Scholar 

  • Muñoz, R., Guieysse, B., & Mattiasson, B. (2003a). Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology, 61, 261–267.

    Article  Google Scholar 

  • Muñoz, R., Jacinto, M., GuieyssE, B., & Mattiasson, B. (2005). combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Applied Microbiology and Biotechnology, 67, 699–707.

    Article  Google Scholar 

  • Muñoz, R., Köllner, C., Guieysse, B., & Mattiasson, B. (2003b). Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnology Letters, 25, 1905–1911.

    Article  Google Scholar 

  • Nambiar, K. R., & Bokil, S. D. (1981). Luxury uptake of nitrogen in flocculating algal-bacterial system. Water Research, 15, 667–669.

    Article  Google Scholar 

  • Nurdogan, Y., & Oswald, W. J. (1995). Enhanced nutrient removal in high-rate ponds. Water Science and Technology, 31, 33–43.

    Article  Google Scholar 

  • Olguí, E. J. (2003). Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances, 22, 81–91.

    Article  Google Scholar 

  • Olguín, E. J. (2012). Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30, 1031–1046.

    Article  Google Scholar 

  • Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15, 249–257.

    Article  Google Scholar 

  • Oswald, W. J. (1990). Advanced integrated wastewater pond systems. San Francisco, CA: ASCE Convention EE Div/ASCE.

    Google Scholar 

  • Oswald, W. J., Gotaas, H. B., Golueke, C. G., Kellen, W. R., Gloyna, E. F., & Hermann, E. R. (1957). Algae in waste treatment. Sewage and Industrial Wastes, 29, 437–457.

    Google Scholar 

  • Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.

    Article  Google Scholar 

  • Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae—Defining the polyphosphate dynamics. Water Research, 43, 4207–4213.

    Article  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.

    Google Scholar 

  • Qin, S., Liu, G. X., & Hu, Z. Y. (2008). The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (chlorophyceae). Process biochemistry, 43, 795–802.

    Google Scholar 

  • Ramanna, L., Guldhe, A., Rawat, I., & Bux, F. (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol, 168, 127–35.

    Google Scholar 

  • Rasoul-amini, S., Montazeri-najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., et al. (2014). Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis and Agricultural Biotechnology, 3, 126–131.

    Article  Google Scholar 

  • Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D., & Harvey, N. W. (2008). Removal of lead (Pb2+) by the Cyanobacterium Gloeocapsa sp. Bioresource technology, 99, 5650–5658.

    Article  Google Scholar 

  • Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.

    Article  Google Scholar 

  • Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(230A), 205–221.

    Google Scholar 

  • Richmond, A. (1992). Open systems for the mass production of photoautotrophic microalgae outdoors: Physiological principles. Journal of Applied Phycology, 4, 281–286.

    Article  Google Scholar 

  • Riquelme, C. E., Fukami, K., & Ishida, Y. (1987). Annual fluctuations of phytoplankton and bacterial communities in maizuru bay and their interrelationship. Nihon Biseibutsu Seitai Gakkaiho (Bulletin of Japanese Society of Microbial Ecology), 2, 29–37.

    Article  Google Scholar 

  • Romero-González, M. E., WilliamS, C. J., & Gardiner, P. H. E. (2001). Study of the mechanisms of cadmium biosorption by dealginated seaweed waste. Environmental Science and Technology, 35, 3025–3030.

    Article  Google Scholar 

  • Ryu, B.-G., kim, E., Kim, H.-S., Kim, J., Choi, Y.-E., & Yang, J.-W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19, 201–210.

    Google Scholar 

  • Sandau, E., Sandau, P., & Pulz, O. (1996). Heavy metal sorption by microalgae. Acta Biotechnologica, 16, 227–235.

    Google Scholar 

  • Saqqar, M. M., & PescoD, M. B. (1996). Performance evaluation of anoxic and facultative wastewater stabilization ponds. Water Science and Technology, 33, 141–145.

    Article  Google Scholar 

  • SaradA, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34, 795–801.

    Article  Google Scholar 

  • Schiewer, S., & Volesky, B. (1995). Modeling of the proton-metal ion exchange in biosorption. Environmental Science and Technology, 29, 3049–3058.

    Article  Google Scholar 

  • Shi, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry, 103, 101–105.

    Google Scholar 

  • Singh, B., Guldhe, A., Rawat, I., & bux, F. (2014). Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 29, 216–245.

    Google Scholar 

  • Singh, B., Guldhe, A., Singh, P., Singh, A., Rawat, I., & Bux, F. (2015). Sustainable production of biofuels from microalgae using a biorefinary approach. In G. Kaushik (Ed.), Applied environmental biotechnology: Present scenario and future trends (pp. 115–128). India: Springer.

    Google Scholar 

  • Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production—A Review. Renewable and Sustainable Energy Reviews, 16, 2347–2353.

    Google Scholar 

  • Skjanes, K., RebourS, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33, 172–215.

    Article  Google Scholar 

  • Spolaore, P., Joannis-cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  Google Scholar 

  • Tadesse, I., Green, F. B., & Puhakka, J. A. (2004). Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system® treating tannery effluent. Water Research, 38, 645–654.

    Article  Google Scholar 

  • Tadesse, I., Isoaho, S. A., Green, F. B., & puhakka, J. A. (2006). Lime enhanced chromium removal in advanced integrated wastewater pond system. Bioresource Technology, 97, 529–534.

    Google Scholar 

  • Terry, P. A., & Stone, W. (2002). Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47, 249–255.

    Google Scholar 

  • Travies, O. L., Benítez, F., Sánchez, E., BorjA, R., Martín, A., & Colmenarejo, M. F. (2006). Batch mixed culture of chlorella vulgaris using settled and diluted piggery waste. Ecological Engineering, 28, 158–165.

    Google Scholar 

  • Vanthoor-Koopmans, M., WIjffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149.

    Google Scholar 

  • Watanabe, K., Imase, M., AoyagI, H., OhmurA, N., saiki, H., & tanaka, H. (2008). Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs. Journal of Applied Microbiology, 105, 741–751.

    Google Scholar 

  • Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One, 8, e53618.

    Google Scholar 

  • Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11, 781–812.

    Article  Google Scholar 

  • Yen, H. W., Hu, I. C., Chen, C. Y., HO, S. H., Lee, D. J. et al. (2013). Microalgae-based biorefinery—From biofuels to natural products. Bioresource Technology, 135, 166–174.

    Google Scholar 

  • Zhang, E., Wang, B., Wang, Q., ZhanG, S., & Zhao, B. (2008). Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. Isolated from municipal wastewater for potential use in tertiary treatment. Bioresource Technology, 99, 3787–3793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizal Bux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rawat, I., Gupta, S.K., Shriwastav, A., Singh, P., Kumari, S., Bux, F. (2016). Microalgae Applications in Wastewater Treatment. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics