Skip to main content

Food and Feed Applications of Algae

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Microalgae and seaweeds have a long history and increasingly important applications as both food ingredients and animal feed. The vast majority of algal species have yet to be evaluated for these applications. However, due to their extensive diversity, it is likely that they will lead to the discovery of many new algal products and processes in the future. This chapter covers algae as food, feed, nutraceuticals, functional food and food ingredients as well as production systems for food from algae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen, L. P., Holck, S., Kupcinskas, L., Kiudelis, G., Jonaitis, L., Janciauskas, D., et al. (2007). Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin. FEMS Immunology and Medical Microbiology, 50, 244–248.

    Article  Google Scholar 

  • Astorga-Espana, M. S., & Mansilla, A. (2014). Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. Journal of Applied Phycology, 26, 973–978.

    Article  Google Scholar 

  • Banerjee, A., Sharma, R., Chisti, Y., & Banerjee, U. C. (2002). Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 22, 245–279.

    Article  Google Scholar 

  • Bangoura, I., Chowdhury, M. T. H., Kang, J. Y., Cho, J. Y., Jun, J. C., & Hong, Y. K. (2014). Accumulation of phlorotannins in the abalone Haliotis discus hannai after feeding the brown seaweed Ecklonia cava. Journal of Applied Phycology, 26, 967–972.

    Article  Google Scholar 

  • Beattie, R., & Beattie, N. (2014). New Zealand Kelp Ltd.

    Google Scholar 

  • Belay, A. (1997). Mass culture of Spirulina outdoors: the earthrise farms experience. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira) physiology, cell biology and biotechnology (pp. 131–158). UK: Taylor & Francis.

    Google Scholar 

  • Benemann, J. (1997). CO2 mitigation with microalgal systems. Energy Conversion and Management, 38, S475–S479.

    Article  Google Scholar 

  • Benemann, J. R. (2008). Opportunities and challenges in algae biofuels production. Algae World 15–15.

    Google Scholar 

  • Benemann, J., & Oswald, W. J. (1996). System and economic analysis of microalgae ponds for conversion of CO2 to biomass. U.S Department of Energy, National Energy Technology Laboratory.

    Google Scholar 

  • Bennedsen, M., Wang, X., Willen, R., Wadstrom, T., & Andersen, L. P. (1999). Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunology Letters, 70, 185–189.

    Article  Google Scholar 

  • Beppu, F., Hosokawa, M., Niwano, Y., & Miyashita, K. (2012). Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A y mice. Lipids Health Dis, 11, 1–8.

    Article  Google Scholar 

  • Beuzenberg, V., Smith, K. F., & Packer, M. A. (2014). Isolation and characterisation of halo-tolerant Dunaliella strains from Lake Grassmere/Kapara Te Hau, New Zealand. New Zealand Journal of Botany, 52, 136–152.

    Article  Google Scholar 

  • Bordoni, A., & Ricciardiello, L. (2014). Pathway-27. http://www.pathway27.eu/home/ date accessed August 16, 2014.

  • Borowitzka, L. J., & Borowitzka, M. A. (1990). Commercial production of β-carotene by Dunaliella salina in open ponds. Bulletin of Marine Science, 47, 244–252.

    Google Scholar 

  • Boussiba, S., & Vonshak, A. (1991). Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant and Cell Physiology, 32, 1077–1082.

    Google Scholar 

  • Briggs, M. (2004). Widescale biodiesel production from Algae. UHN BioDiesel group.

    Google Scholar 

  • Brown, L. M., & Zeiler, K. G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Conversion and Managemen, t, 34, 1005–1013.

    Article  Google Scholar 

  • Burr, M. L. (2000). Lessons from the story of n-3 fatty acids. American Journal of Clinical Nutrition, 71, 397S–398S.

    Google Scholar 

  • Carlsson, A. S., van Beilen, J. B., Möller, R., & Clayton, D. (2007). Micro- and Macro-algae: Utility for industrial applications. In D. Bowles (Ed.), Outputs from the realising the economic potential of sustainable resources—Bioproducts from non-food crops (EPOBIO) project. Berks: University of York.

    Google Scholar 

  • Cawood, M. (2009). Anti-methane feed for cattle: Marine algae. Stock Journal (Farmonline Home).

    Google Scholar 

  • Černá, M. (2011). Seaweed proteins and amino acids as nutraceuticals. Advances in Food and Nutrition Research, 64, 297–312.

    Article  Google Scholar 

  • Chattopadhyay, K., Ghosh, T., Pujol, C. A., Carlucci, M. J., Damonte, E. B., & Ray, B. (2008). Polysaccharides from Gracilaria corticata: sulfation, chemical characterization and anti-HSV activities. International Journal of Biological Macromolecules, 43, 346–351.

    Article  Google Scholar 

  • Chattopadhyay, N., Ghosh, T., Sinha, S., Chattopadhyay, K., Karmakar, P., & Ray, B. (2010). Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food Chemistry, 118, 823–829.

    Article  Google Scholar 

  • Chelf, P., Brown, L. M., & Wyman, C. E. (1994). Aquatic biomass resources and carbon dioxide trapping. Biomass and Bioenergy, 4, 175–183.

    Article  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  Google Scholar 

  • Chopin, T. (2012). Seaweed aquaculture provides diversified products, key ecosystems functions. Part II. Recent evolution of seaweed industry. Global Aquacult Advocate, 15, 24–27.

    Google Scholar 

  • Chopin, T. (2013). integrated multi-trophic aquaculture—Ancient, adaptable concept focuses on ecological integration. Global Aquacult Advocate, 16, 16–19.

    Google Scholar 

  • Chopin, T., & Neish, I. (2014). The 21st international seaweed symposium: Seaweed science for sustainable prosperity. Journal of Applied Phycology, 26, 695–698.

    Article  Google Scholar 

  • Chou, P. Y., Huang, G. J., Cheng, H. C., Wu, C. H., Chien, Y. C., Chen, J. S., et al. (2010). Analgesic and anti-inflammatory activities of an ethanol extract of Dunaliella Salina teod. (Chlorophyceae). Journal of Food Biochemistry, 34, 1288–1302.

    Article  Google Scholar 

  • Chynoweth, D. P. (1987). Biological Gasification of Marine Algae. In K. T. Bird & P. H. Benson (Eds.), Seaweed cultivation for renewable resources (pp. 285–303). New York: Elsevier.

    Google Scholar 

  • Cleland, L. G., Gibson, R. A., Hawkes, J. S., & James, M. J. (1990). Comparison of cell membrane phospholipid fatty acids in five rat strains fed four test diets. Lipids, 25, 559–564.

    Article  Google Scholar 

  • Coppens, P., da Silva, M. F., & Pettman, S. (2006). European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety. Toxicology, 221, 59–74.

    Article  Google Scholar 

  • Cui, Y. Q., Zhang, L. J., Zhang, T., Luo, D. Z., Jia, Y. J., Guo, Z. X., et al. (2010). Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clinical and Experimental Pharmacology and Physiology, 37, 422–428.

    Article  Google Scholar 

  • Cumashi, A., Ushakova, N., Preobrazhenskaya, E., D’Incecco, A., Piccoli, A., Totani, L., et al. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17, 541–552.

    Article  Google Scholar 

  • Damontea, E. B., Matulewiczb, M. C., & Cerezo, A. S. (2004). Sulfated seaweed polysaccharides as antiviral agents. Current Medicinal Chemistry, 11, 2399–2419.

    Article  Google Scholar 

  • DeFelice, S. L. (2014). The nutraceutical revolution: Fueling a powerful, new international market, the foundation for innovativer medicine, mountainside, New Jersey.

    Google Scholar 

  • Doucha, J., Livansky, K., Kotrbacek, V., & Zachleder, V. (2009). Production of Chlorella biomass enriched by selenium and its use in animal nutrition: A review. Applied Microbiology and Biotechnology, 83, 1001–1008.

    Article  Google Scholar 

  • Drew, K. M. (1949). Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kütz. Nature, 164, 748–749.

    Article  Google Scholar 

  • Evans, F. D., & Critchley, A. T. (2014). Seaweeds for animal production use. Journal of Applied Phycology, 26, 891–899.

    Article  Google Scholar 

  • FAO. (1998). Carbohydrates in human nutrition. (FAO Food and Nutrition Paper—66). Agriculture and Consumer Protection.

    Google Scholar 

  • FAO. (2009). Algae-based biofuels: A review of challenges and opportunities for developing countries (p. 49). Roma: Food and Agriculture Organisation of the United Nations.

    Google Scholar 

  • FAO. (2012). The state of the world fisheries and aquaculture (p. 209). Roma: Food and Agriculture Organisation of the United Nations.

    Google Scholar 

  • Farzaneh-Far, R., Lin, J., Epel, E. S., Harris, W. S., Blackburn, E. H., & Whooley, M. A. (2010). Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA, 303, 250–257.

    Article  Google Scholar 

  • Fenoradosoa, T. A., Delattre, C., Laroche, C., Wadouachi, A., Dulong, V., Picton, L., et al. (2009). Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. International Journal of Biological Macromolecules, 45, 140–145.

    Article  Google Scholar 

  • Fleurence, J. (1999). Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology, 10, 25–28.

    Article  Google Scholar 

  • Garcia-Malea, M. C., Brindley, C., Del Rio, E., Acien, F. G., Fernandez, J. M., & Molina, E. (2005). Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochemical Engineering Journal, 26, 107–114.

    Article  Google Scholar 

  • Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N., & Tredici, M. R. (2014). Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol Biofuels, 7, 84.

    Google Scholar 

  • Heubeck, S., & Craggs, R. (2007). Resource assessment of algae biomass for potential bioenergy production in New Zealand. Bioenergy Options Program.

    Google Scholar 

  • Holdt, S. L., & Edwards, M. D. (2014). Cost-effective IMTA: A comparison of the production efficiencies of mussels and seaweed. Journal of Applied Phycology, 26, 933–945.

    Article  Google Scholar 

  • Huntley, M. E., & Redalje, D. G. (2007). CO2 Mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaptation Strategies for Global Change, 12, 573–608.

    Article  Google Scholar 

  • Hurtado, A. Q., & Agbayani, R. F. (2002). Deep-sea farming of Kappaphycus using the multiple raft, long-line method. Botanica Marina, 45, 438–444.

    Google Scholar 

  • Hwang, E. K., Hwang, I. K., Park, E. J., Gong, Y. G., & Park, C. S. (2014). Development and cultivation of F-2 hybrid between Undariopsis peterseniana and Undaria pinnatifida for abalone feed and commercial mariculture in Korea. Journal of Applied Phycology, 26, 747–752.

    Article  Google Scholar 

  • Irwandi, J., Dedi, N., Salleh. H. M., Muhammad, T., & Kazuo, M. (2011). Isolation of fucoxanthin and fatty acids analysis of Padina australis and cytotoxic effect of fucoxanthin on human lung cancer (H1299) cell lines. African Journal of Biotechnology, 10, 18855–18862.

    Google Scholar 

  • Johnson, J. S., Raubenheimer, D., Bury, S. J., & Clements, K. D. (2012). Effect of ingestion on the stable isotope signatures of marine herbivorous fish diets. Journal of Experimental Marine Biology and Ecology, 438, 137–143.

    Google Scholar 

  • Jyonouchi, H., Hill, R. J., Tomita, Y., & Good, R. A. (1991). Studies of immunomodulating actions of carotenoids. I. Effects of beta-carotene and astaxanthin on murine lymphocyte functions and cell surface marker expression in in vitro culture system. Nutrition and Cancer, 16, 93–105.

    Article  Google Scholar 

  • Kawai, H., Kitamura, A., Mimura, M., Mimura, T., Tahara, T., Aida, D., et al. (2014). Radioactive cesium accumulation in seaweeds by the Fukushima 1 Nuclear Power Plant accident—two years’ monitoring at Iwaki and its vicinity. Journal of Plant Research, 127, 23–42.

    Article  Google Scholar 

  • Kim, S. M., Jung, Y. J., Kwon, O. N., Cha, K. H., Um, B. H., Chung, D., et al. (2012). A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotech, 166, 1843–1855.

    Article  Google Scholar 

  • Kim, W. J., Koo, Y. K., Jung, M. K., Moon, H. R., Kim, S. M., Synytsya, A., et al. (2010). Anticoagulating activities of low-molecular weight fuco-oligosaccharides prepared by enzymatic digestion of fucoidan from the sporophyll of Korean Undaria pinnatifida. Archives of Pharmacal Research, 33, 125–131.

    Article  Google Scholar 

  • Kim, S. M., & Pan, C. H. (2012). Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. Journal of the Korean Society for Applied Biological Chemistry, 55, 477–483.

    Article  Google Scholar 

  • Kromhout, D., Yasuda, S., Geleijnse, J. M., & Shimokawa, H. (2012). Fish oil and omega-3 fatty acids in cardiovascular disease: Do they really work? European Heart Journal, 33, 436–443.

    Article  Google Scholar 

  • Lavy, A., Naveh, Y., Coleman, R., Mokady, S., & Werman, M. J. (2003). Dietary Dunaliella bardawil, a beta-carotene-rich alga, protects against acetic acid-induced small bowel inflammation in rats. Inflammatory Bowel Diseases, 9, 372–379.

    Article  Google Scholar 

  • Lee, J. -L., Hou, M. -F., Huang, H. -W., Chang, F. -R., Yeh, C. -C., Tang, J. -Y., & Chang, H. -W. (2013). Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell International, 13, 55.

    Google Scholar 

  • Lüning, K., & Pang, S. (2003). Mass cultivation of seaweeds: Current aspects and approaches. Journal of Applied Phycology, 15, 115–119.

    Article  Google Scholar 

  • Mamat, H., Matanjun, P., Ibrahim, S., Amin, S. F. M., Hamid, M. A., & Rameli, A. S. (2014). The effect of seaweed composite flour on the textural properties of dough and bread. Journal of Applied Phycology, 26, 1057–1062.

    Article  Google Scholar 

  • Manivannan, K., Karthikai devi, G., Anantharaman, P., & Balasubramanian, T. (2011). Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 1, 114–120.

    Google Scholar 

  • Martineau, E., Wood, S. A., Miller, M. R., Jungblut, A. D., Hawes, I., Webster-Brown, J. et al. (2013). Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia (in Press).

    Google Scholar 

  • Mehta, G. K., Meena, R., Prasad, K., Ganesan, M., & Siddhanta, A. K. (2010). Preparation of galactans from Gracilaria debilis and Gracilaria salicornia (Gracilariales, Rhodophyta) of Indian waters. Journal of Applied Phycology, 22, 623–627.

    Article  Google Scholar 

  • Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 177.

    Google Scholar 

  • Miller, M. R., Nichols, P. D., & Carter, C. G. (2009). New alternative n-3 long chain polyunsaturated fatty acid-rich oil sources. In Fish oil replacement and alternative lipid sources in aquaculture feed. Florida: CRC Press.

    Google Scholar 

  • Miller, M. R., Quek, S.-Y., Staehler, K., Nalder, T., & Packer, M. A. (2012). Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquaculture Research.

    Google Scholar 

  • Moore, A. (2001). Blooming prospects? Humans have eaten seaweed for millennia; Now microalgae are to be served up in a variety of novel health supplements, medicaments and preparations. EMBO Reports, 2, 462–464.

    Article  Google Scholar 

  • Morris, C., Bala, S., South, G. R., Lako, J., Lober, M., & Simos, T. (2014). Supply chain and marketing of sea grapes, Caulerpa racemosa (ForsskAyenl) J. Agardh (Chlorophyta: Caulerpaceae) in Fiji. Samoa and Tonga. Jouranl Applied Phycology, 26, 783–789.

    Article  Google Scholar 

  • Mouritsen, O. G. (2013). Seaweeds, edible, available and sustainable. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Murakami, M., & Ikenouchi, M. (1997). The biological CO2 fixation and utilization project by RITE (2)—Screening and breeding of microalgae with high capability in fixing CO2. Energy Conversion and Management 38, S493–497.

    Google Scholar 

  • Nagappan, T., & Vairappan, C. S. (2014). Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). Journal of Applied Phycology, 26, 1019–1027.

    Article  Google Scholar 

  • Nakazawa, Y., Sashima, T., Hosokawa, M., & Miyashita, K. (2009). Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. Journal of Functional Foods, 1, 88–97.

    Article  Google Scholar 

  • Nalder, T. D., Miller, M. R., & Packer, M. A. (2015). Changes in lipid class content and compostion in Isocrysis sp. (T-Iso) grown in batch culture. Submiitted October 2014.

    Google Scholar 

  • Nguyen, K. D. (2013). Astaxanthin: A comparative case of synthetic vs. natural production. In Chemical and biomolecular engineering publications and other works. Knoxville, Tennessee: University of Tennessee.

    Google Scholar 

  • Norsker, N. H., Barbosa, M. J., Vermue, M. H., & Wijffels, R. H. (2011). Microalgal production—A close look at the economics. Biotechnology Advances, 29, 24–27.

    Article  Google Scholar 

  • NRSF. (2014). The North Ronaldsay sheep fellowship.

    Google Scholar 

  • Oren, A. 2005. A hundred years of Dunaliella research: 1905–2005.

    Google Scholar 

  • Packer, M. (2009). Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energ Policy, 37, 3428–3437.

    Article  Google Scholar 

  • Park, J. S., Chyun, J. H., Kim, Y. K., Line, L. L., & Chew, B. P. (2010). Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition and metabolism, 7, 18.

    Article  Google Scholar 

  • Periyasamy, C., Anantharaman, P., & Balasubramanian, T. (2014). Social upliftment of coastal fisher women through seaweed (Kappaphycus alvarezii (Doty) Doty) farming in Tamil Nadu, India. Journal of Applied Phycology, 26, 775–781.

    Article  Google Scholar 

  • Phaneuf, D., Côté, I., Dumas, P., Ferron, L. A., & LeBlanc, A. (1999). Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Environmental Research, 80, S175–S182.

    Article  Google Scholar 

  • Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science and Technology, 19, 31–39.

    Article  Google Scholar 

  • Plaza, M., Herrero, M., Cifuentes, A., & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agriculture and Food Chemistry, 57, 7159–7170.

    Article  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.

    Article  Google Scholar 

  • Ratledge, C., & Cohen, Z. (2008). Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technology, 20, 155–160.

    Article  Google Scholar 

  • Renn, D. (1997). Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends in Biotechnology, 15, 9–14.

    Article  Google Scholar 

  • Rocha de Souza, M. C., Marques, C. T., Guerra Dore, C. M., Ferreira da Silva, F. R., Oliveira Rocha, H. A., & Leite, E. L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19, 153–160.

    Article  Google Scholar 

  • Sanchez, A., Sanchez-Rodriguez, I., & Casas-Valdez, M. (2014). Evaluation of commercial and natural food in experimental cultures of white shrimp based on stable carbon isotopes. Journal of Applied Phycology, 26, 961–965.

    Article  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the U.S. Department of Energy’s aquatic species program—biodiesel from Algae. NREL closeout report.

    Google Scholar 

  • Sho, N., Masashi, H., & Kazuo, M. (2012). Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/obese KK-Ay mice. Phytomedicine, 19, 389–394.

    Article  Google Scholar 

  • Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51, 456–467.

    Article  Google Scholar 

  • Sjamsiah, Ramli N., Daik, R., Yarmo, M. A., & Ajdari, Z. (2014). Nutritional study of Kapparazii powder(TM) as a food ingredient. Journal of Applied Phycology, 26, 1049–1055.

    Article  Google Scholar 

  • Spiteller, G. (2005). Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 40, 755–771.

    Article  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. J Biosci Bioeng 101, 87–96.

    Google Scholar 

  • Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., et al. (2010). An economic and technical evaluation of microalgal biofuels. Nature Biotechnology, 28, 126–128.

    Article  Google Scholar 

  • Sugimura, Y., Suzuki, Y., & Miyake, Y. (1976). The content of selenium and its chemical form in sea water. Journal of the Oceanographical Society of Japan 32,235–241.

    Google Scholar 

  • Synytsya, A., Kim, W. J., Kim, S. M., Pohl, R., Synytsya, A., Kvasnička, F., et al. (2010). Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydrate Polymers, 81, 41–48.

    Article  Google Scholar 

  • Taw, N. (1993). Seaweed (Gracilaria) farming trials in Sorsogon, the Philippines. The Philippines: FAO.

    Google Scholar 

  • Teas, J., Vena, S., Cone, D. L., & Irhimeh, M. (2013). The consumption of seaweed as a protective factor in the etiology of breast cancer: Proof of principle. Journal of Applied Phycology, 25, 771–779.

    Article  Google Scholar 

  • Thomson, C. D., Smith, T. E., Butler, K. A., & Packer, M. A. (1996). An evaluation of urinary measures of iodine and selenium status. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements, 10, 214–222.

    Article  Google Scholar 

  • Trent, J. (2012). OMEGA (Offshore Membrane Enclosures for Growing Algae)—A feasibility study for wastewater to biofuels, NASA Ames Research Center.

    Google Scholar 

  • Usui, N., & Masahiro, M. (1997). The Biological CO2 fixation and utilization project by RITE (1)—highly-effective photobioreactor systems. Energy Conversion and Management 38, S487–492.

    Google Scholar 

  • Wakimoto, T., Kondo, H., Nii, H., Kimura, K., Egami, Y., Oka, Y., et al. (2011). Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proceedings of the National Academy of Sciences of the United States of America, 108, 17533–17537.

    Article  Google Scholar 

  • Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., et al. (2008). Superoxide flashes in single mitochondria. Cell, 134, 279–290.

    Article  Google Scholar 

  • Weissman, J. C., & Goebel, R. P. (1987). Design and analysis of pond systems for the purpose of producing fuels. In Report to the Solar Energy Research Institute (pp SERI/STR-231-2840). Golden, Colorado.

    Google Scholar 

  • Wen, Z. Y., & Chen, F. (2001a). Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnology and Bioengineering, 75, 159–169.

    Article  Google Scholar 

  • Wen, Z. Y., & Chen, F. (2001b). A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Applied Microbiology and Biotechnology, 57, 316–322.

    Article  Google Scholar 

  • Wheeler, W. N., & Druehl, L. D. (1986). Seasonal growth and productivity of Macrocystis integrifolia in British Columbia, Canada. Marine Biology, 90, 181–186.

    Article  Google Scholar 

  • Yamashita, E. (2006). The effects of a dietary supplement containing astaxanthin on skin condition. In H. Hashimoto (Ed.), Carotenoid science (pp. 91–95). Osaka City: Japanese Society for Carotenoid Research.

    Google Scholar 

  • Yang, D. J., Lin, J. T., Chen, Y. C., Liu, S. C., Lu, F. J., Chang, T. J., et al. (2013). Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-kappa B and JNK inactivation. Journal of Functional Foods, 5, 607–615.

    Article  Google Scholar 

  • Yates, C. M., Calder, P. C., & Ed Rainger, G. (2014). Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacology and Therapeutics, 141, 272–282.

    Article  Google Scholar 

  • Yoon, W.-J., Ham, Y. M., Kim, S.-S., Yoo, B.-S., Moon, J.-Y., Baik, J. S., et al. (2009). Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. EurAsian, Journal of BioSciences, 3, 130–143.

    Article  Google Scholar 

  • Zertuche-Gonzalez, J. A., Sanchez-Barredo, M., Guzman-Calderon, J. M., & Altamirano-Gomez, Z. (2014). Eisenia arborea JE Areschoug as abalone diet on an IMTA farm in Baja California, Mexico. Journal of Applied Phycology, 26, 957–960.

    Article  Google Scholar 

  • Zimmerman, R. C., & Robertson, D. L. (1985). Local hydrography and growth of the giant kelp Macrocystis pyrifera, at Santa Catalina Island, California. Limnology and Oceanography, 30, 1298–1302.

    Article  Google Scholar 

  • Zuccarello, G. C., Critchley, A. T., Smith, J., Sieber, V., Bleicher Lhonneur, G., & West, J. A. (2006). Systematics and genetic variation in commercial Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta). Journal of Applied Phycology, 18, 643–651.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. Steve Webb and Jacquie Reed for critical reviews of the manuscript. We thank Tim Cuff for photography of the Cawthron Institute microalgae production facility. This work was partially funded by a New Zealand Ministry of Business Innovation and Employment grant “Functional food ingredients extracted from New Zealand’s Greenshell™ mussel and microalgae species to create hypoallergenic, anti-allergenic and anti-inflammatory foods” MBIE contract number CAWX1318 and the Cawthron Institute Internal Investment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Packer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Packer, M.A., Harris, G.C., Adams, S.L. (2016). Food and Feed Applications of Algae. In: Bux, F., Chisti, Y. (eds) Algae Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12334-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12334-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12333-2

  • Online ISBN: 978-3-319-12334-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics