Skip to main content

Lebesgue Measure of Recurrent Scrambled Sets

  • Conference paper
  • First Online:
Nonlinear Maps and their Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 112))

  • 630 Accesses

Abstract

It was proved by M. Babilonová-Štefánková (Int J Bifurc Chaos 13(7):1695–1700, 2003) that each bitransitive continuous map f of the interval is conjugated to a map g which is distributionally chaotic with a distributionally scrambled set D. The goal of this chapter is to improve this result, by showing that D is formed by points that are recurrent but not almost periodic. Moreover, as a main result it will be proved that any bitransitive map \(f \in C(I,I)\) is topologically conjugate to a map \(g \in C(I,I)\) which satisfies the following conditions: (i) g is extremally Li–Yorke chaotic with Li–Yorke scrambled set S with full Lebesgue measure and \(S \subset R(g) \backslash \mathrm{A}(g)\), (ii) g is ω chaotic and every ω scrambled set Ω has zero Lebesgue measure and \(\Omega \subset R(g) \backslash \mathrm{A}(g)\), (iii) g is distributionally chaotic with a distributionally scrambled set D with full Lebesgue measure and \(D \subset R(g) \backslash \mathrm{A}(g)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babilonová, M.: The bitransitive continuous maps of the interval are conjugate to maps extremely chaotic a.e. Acta Math. Univ. Comen. LXIX. 2, 229–232 (2000)

    Google Scholar 

  3. Babilonová-Štefánková, M.: Extreme chaos and transitivity. Int. J. Bifurc. Chaos 7, 1695–1700 (2003)

    Article  Google Scholar 

  4. Balibrea, F., Smítal, J., Štefánková, M.: The three versions of distributional chaos. Chaos Solitons Fractals 23, 1581–1583 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Birkhoff, G.D.: Recent advances in dynamics. Science 51(1307), 51–55 (1920)

    Article  Google Scholar 

  6. Blanchard, F., Huang, W., Snoha, L.: Topological size of scrambled sets. Colloq. Math. 110(2), 293–361 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Block, L., Coppel, W.A.: Dynamics in One Dimension. Lecture Notes in Mathematics, vol. 1513, Springer, Berlin (1992).

    Google Scholar 

  8. Blokh, A.M.: The “spectral” decomposition for one-dimensional maps. Dyn. Rep. 4, 1–59 (1995)

    Article  MathSciNet  Google Scholar 

  9. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bruckner, A.M., Hu, T.: On scrambled sets for chaotic functions. Trans. Am. Math. Soc. 301, 289–297 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Forti, G.L.: Various notions of chaos for discrete dynamical systems. Aequ. Math. 70, 1–13 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Furstenberg, H.: Recurrence in ergodic theory and combinational number theory. Princeton University Press, Princeton (1981)

    Book  Google Scholar 

  13. Gorman, W.J.: The homeomorphic transformation of c-sets into d-sets. Proc. Am. Math. Soc. 17, 825–830 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guirao, J.L.G., Lampart, M.: Relations between distributional, Li–Yorke and ω chaos. Chaos Solitons Fractals 28, 788–792 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lampart, M.: Scrambled sets for transitive maps. Real Anal. Exch. 27(2), 801–808 (2001/2002)

    Google Scholar 

  16. Lampart, M.: Chaos, transitivity and recurrence. Grazer Math. Ber. 350, 169–174 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Lampart, M., Oprocha, P.: On omega chaos and specification property. Topol. Appl. 156(18), 2979–2985 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, S.: ω-chaos and topological entropy. Trans. Am. Math. Soc. 339, 243–249 (1993)

    MATH  Google Scholar 

  19. Li, T.Y., Yorke, J.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, J., Oprocha, P.: On n-scrambled tuples and distributional chaos in a sequence. J. Differ. Equ. Appl. 19(6), 927–941 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mira, C.: Noninvertible maps. Scholarpedia 2(9), 232–8 (2007)

    Article  Google Scholar 

  22. Mira, C.: Noninvertible maps/first subpage. Scholarpedia 2(9), 232–8 (2007)

    Article  Google Scholar 

  23. Mycielski, J.: Independent sets in topological algebras. Fund. Math. 55, 137–147 (1964)

    MathSciNet  Google Scholar 

  24. Oprocha, P.: Coherent lists and chaotic sets. Disc. Cont. Dyn. Syst. 31(3), 797–825 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Poincaré H. Sur le problème des trois corps et les équations de la dynamique. Mittag-Leffler, Paris 1890

    Google Scholar 

  26. Pulkin, C.P.: Oscillating Iterated Sequences. Dokl. Akad. Nauk USSR. 73(6), 1129–1132 (1950)

    MathSciNet  Google Scholar 

  27. Sharkovskiĭ, A.N.: Coexistence of cycles of a continuous map of the line into itself. Ukrain. Mat. Zh. 16, 61–71 (1964); trans. J. Tolosa, Proceedings of Thiry Years after Sharkovskiĭs Theorem: New Perspectives (Murcia, Spain 1994), Int. J. Bifurc. Chaos Appl. Sci. Eng. 5 1263–1273 (1995)

    Google Scholar 

  28. Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344, 737–754 (1994)

    Article  MATH  Google Scholar 

  29. Walters, L.: An Introduction to Ergodic Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  30. Wanga, H., Leia, F., Wang, L.: DC3 and Li–Yorke chaos. Applied Mathematics Letters, 31, 29–39 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence Project (CZ.1.05/1.1.00/02.0070). The work was also supported by the Grant Agency of the Czech Republic, Grant No. P201/10/0887.

The author is grateful to Piotr Oprocha for helpful discussions on Mycielski’s theorem and its relation to the topic, to Referees for their relevant comments that made this chapter more readable for researchers coming from different disciplines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Lampart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lampart, M. (2015). Lebesgue Measure of Recurrent Scrambled Sets. In: López-Ruiz, R., Fournier-Prunaret, D., Nishio, Y., Grácio, C. (eds) Nonlinear Maps and their Applications. Springer Proceedings in Mathematics & Statistics, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-12328-8_6

Download citation

Publish with us

Policies and ethics