Skip to main content

An Equivalence-Preserving Transformation of Shift Registers

  • Conference paper
  • First Online:
Sequences and Their Applications - SETA 2014 (SETA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8865))

Included in the following conference series:

Abstract

The Fibonacci-to-Galois transformation is useful for reducing the propagation delay of feedback shift register-based stream ciphers and hash functions. In this paper, we extend it to handle Galois-to-Galois case as well as feedforward connections. This makes possible transforming Trivium stream cipher and increasing its keystream data rate by 27 % without any penalty in area. The presented transformation might open new possibilities for cryptanalysis of Trivium, since it induces a class of stream ciphers which generate the same set of keystreams as Trivium, but have a different structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An \(n\)-bit NLFSR is uniform if, for all \(i \in \{\tau ,\tau +1,\ldots ,n-1\}\), the largest index of variables of function \(g_i\) in (2) is smaller than or equal to \(\tau \), where \(\tau \) is the maximal index such that, for all \(j \in \{0,1,\ldots ,\tau -1\}\), \(g_j = 0\).

  2. 2.

    We use an \(n\)-bit ring as a simplification of an \(n\)-bit shift register which shows the structure of its feedback/feedforward connections. The gates implementing GF(2) addition (XORs) are omitted and the gates implementing GF(2) multiplication (ANDs) are represented by a dot. Everything unnecessary for structural analysis is removed.

  3. 3.

    Note that in this case the initial states are the same but generally they can be different [22].

References

  1. Good, T., Benaissa, M.: ASIC hardware performance. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 267–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Ericsson, 5G radio access - research and vision. White paper (2013). http://www.ericsson.com/news/130625-5g-radio-access-research-and-vision_244129228_c

  3. Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)

    Google Scholar 

  4. Klimov, A., Shamir, A.: A new class of invertible mappings. Revised Papers from the 4th International Workshop on Cryptographic Hardware and Embedded Systems, CHES’02, pp. 470–483. Springer, London (2002)

    Google Scholar 

  5. Xu, A.B., He, D.K., Wang, X.M.: An implementation of the GSM general data encryption algorithm A5. In: Proceedings of CHINACRYPT’94 (1994)

    Google Scholar 

  6. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Gammel, B., Göttfert, R., Kniffler, O.: Achterbahn-128/80: Design and analysis. In: SASC’2007: Workshop Record of the State of the Art of Stream Ciphers, pp. 152–165 (2007)

    Google Scholar 

  9. Gittins, B., Landman, H.A., O’Neil, S., Kelson, R.: A presentation on VEST hardware performance, chip area measurements, power consumption estimates and benchmarking in relation to the AES, SHA-256 and SHA-512. Cryptology ePrint Archive, Report 2005/415 (2005). http://eprint.iacr.org/2005/415

  10. Gammel, B.M., Göttfert, R., Kniffler, O.: An NLFSR-based stream cipher. In: ISCAS (2006)

    Google Scholar 

  11. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash. J. Cryptol. 26(2), 313–339 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dubrova, E.: A transformation from the Fibonacci to the Galois NLFSRs. IEEE Trans. Inf. Theory 55, 5263–5271 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cusick, T.W., Stǎnicǎ, P.: Cryptographic Boolean Functions and Applications. Academic Press, San Diego (2009)

    Google Scholar 

  14. Brayton, R.K., McMullen, C., Hatchel, G., Sangiovanni-Vincentelli, A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston (1984)

    Book  MATH  Google Scholar 

  15. Goresky, M., Klapper, A.: Fibonacci and Galois representations of feedback-with-carry shift registers. IEEE Trans. Inf. Theory 48, 2826–2836 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mrugalski, G., Rajski, J., Tyszer, J.: Ring generators - New devices for embedded test applications. Trans. Comput. Aided Des. Integr. Circuits Syst. 23(9), 1306–1320 (2004)

    Article  Google Scholar 

  17. Kagaris, D.: A similarity transform for linear finite state machines. Discrete Appl. Math. 154, 1570–1577 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Arnault, F., Berger, T., Minier, M., Pousse, B.: Revisiting LFSRs for cryptographic applications. IEEE Trans. Inf. Theory 57(12), 8095–8113 (2011)

    Article  MathSciNet  Google Scholar 

  19. Arnault, F., Berger, T.P., Pousse, B.: A matrix approach for FCSR automata. Crypt. Commun. 3, 109–139 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chabloz, J.-M., Mansouri, S.S., Dubrova, E.: An algorithm for constructing a fastest galois NLFSR generating a given sequence. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Massey, J., Liu, R.-W.: Equivalence of nonlinear shift-registers. IEEE Trans. Inf. Theory 10(4), 378–379 (1964)

    Article  MATH  Google Scholar 

  22. Dubrova, E.: Finding matching initial states for equivalent NLFSRs in the Fibonacci to the Galois configurations. IEEE Trans. Inf. Theory 56, 2961–2967 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part the research grant No 621-2010-4388 from the Swedish Research Council and in part by the research grant No SM12-0005 from the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Dubrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dubrova, E. (2014). An Equivalence-Preserving Transformation of Shift Registers. In: Schmidt, KU., Winterhof, A. (eds) Sequences and Their Applications - SETA 2014. SETA 2014. Lecture Notes in Computer Science(), vol 8865. Springer, Cham. https://doi.org/10.1007/978-3-319-12325-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12325-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12324-0

  • Online ISBN: 978-3-319-12325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics