Skip to main content

The Blowup Method

  • Chapter
  • First Online:
Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

  • 6129 Accesses

Abstract

This chapter deals with geometric desingularization of nonhyperbolic equilibrium points using the so-called blowup method. The main insight, due to Dumortier and Roussarie, is that singularities at which fast and slow directions interact may be converted into partially hyperbolic problems using the blowup method. The method inserts a suitable manifold, e.g., a sphere, at the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

    Google Scholar 

  2. J.M. Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math.., 28(4):473–486, 1977.

    Article  MATH  Google Scholar 

  3. P. Breitenlohner, P. Forgács, and D. Maison. Classification of static, spherically symmetric solutions of the Einstein-Yang-Mills theory with positive cosmological constant. Commun. Math. Phys., 261(3):569–611, 2006.

    Article  MATH  Google Scholar 

  4. M. Brunella and M. Miari. Topological equivalence of a plane vector field with its principal part defined through newton polyhedra. J. Differential Equat., 85:338–366, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bonckaert, P. De Maesschalck, and F. Dumortier. Well adapted normal linearization in singular perturbation problems. J. Dyn. Diff. Eq., 23(1):115–139, 2011.

    Article  MATH  Google Scholar 

  6. A. Braides, M. Maslennikov, and L. Sigalotti. Homogenization by blow-up. Applicable Analysis, 87(12):1341–1356, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Bonet. Singular perturbation of relaxed periodic orbits. J. Differential Equat., 66(3):301–339, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  8. Alexander D. Bruno. Local Methods in Nonlinear Differential Equations. Springer, 1989.

    Google Scholar 

  9. M.L. Cartwright. Van der Pol’s equation for relaxation oscillations. In Contributions to the Theory of Nonlinear Oscillations II, pages 3–18. Princeton University Press, 1952.

    Google Scholar 

  10. J. Carr. Applications of Centre Manifold Theory. Springer, 1981.

    Google Scholar 

  11. C. Chicone. Ordinary Differential Equations with Applications. Texts in Applied Mathematics. Springer, 2nd edition, 2010.

    Google Scholar 

  12. F. Dumortier and C. Herssens. Polynomial Liénard equations near infinity. J. Differential Equat., 153(1):1–29, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Dumortier, C. Li, and Z. Zhang. Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops. J. Differential Equat., 139(1):146–193, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Dumortier, N. Popovic, and T.J. Kaper. The critical wave speed for the Fisher–Kolmogorov–Petrowskii–Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Dumortier and R. Roussarie. Canard Cycles and Center Manifolds, volume 121 of Memoirs Amer. Math. Soc. AMS, 1996.

    Google Scholar 

  16. F. Dumortier, R. Roussarie, and J. Sotomayor. Bifurcations of cuspidal loops. Nonlinearity, 10(6):1369–1408, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Dumortier. Singularities of vector fields on the plane. J. Differential Equat., 23(1):53–106, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Dumortier. Singularities of Vector Fields. IMPA, Rio de Janeiro, Brazil, 1978.

    Google Scholar 

  19. F. Dumortier. Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations. In D. Schlomiuk, editor, Bifurcations and Periodic Orbits of Vector Fields, pages 19–73. Kluwer, Dortrecht, The Netherlands, 1993.

    Google Scholar 

  20. I. Fonseca and S. Müller. Quasiconvex integrands and lower semicontinuity in L 1. Bull. Belg. Math. Soc, 23:1081–1098, 1992.

    MATH  Google Scholar 

  21. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.

    Book  MATH  Google Scholar 

  22. S.D. Glyzin, A.Yu. Kolesov, and N.Kh. Rozov. Blue sky catastrophe in relaxation systems with one fast and two slow variables. Differential Equat., 44(2):161–175, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  23. R.T. Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys., 18:1794–1797, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Gasull, J. Llibre, V. Maosa, and F. Maosas. The focus-centre problem for a type of degenerate system. Nonlinearity, 13(3):699–729, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Garcia, E. Pérez-Chavela, and A. Susin. A generalization of the Poincaré compactification. Arch. Rat. Mech. Anal., 179(2):285–302, 2006.

    Article  MATH  Google Scholar 

  26. J. Guckenheimer. Multiple bifurcation problems of codimension two. SIAM J. Math. Anal., 15(1):1–49, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: I. Ann. of Math., 79(1):109–203, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: II. Ann. of Math., 79(2):205–326, 1964.

    Article  MathSciNet  Google Scholar 

  29. Yu. Ilyashenko and S. Yakovenko. Lectures on Analytic Differential Equations. AMS, 2008.

    Google Scholar 

  30. W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819–824, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  31. V. Kaloshin. The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles. Invent. Math., 151(3):451–512, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  32. A.Yu. Kolesov and E.F. Mishchenko. Existence and stability of the relaxation torus. Russ. Math. Surv., 44(3):204–205, 1989.

    Google Scholar 

  33. A.Yu. Kolesov. On the existence and stability of a two-dimensional relaxational torus. Math. Notes, 56(6):1238–1243, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Kollár. Lectures on Resolution of Singularities. Princeton University Press, 2007.

    Google Scholar 

  35. M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions. SIAM J. Math. Anal., 33(2):286–314, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Krupa and P. Szmolyan. Geometric analysis of the singularly perturbed fold. in: Multiple-Time-Scale Dynamical Systems, IMA Vol. 122:89–116, 2001.

    Google Scholar 

  37. M. Krupa and P. Szmolyan. Relaxation oscillation and canard explosion. J. Differential Equat., 174: 312–368, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  38. C. Kuehn. Normal hyperbolicity and unbounded critical manifolds. Nonlinearity, 27(6):1351–1366, 2014.

    Article  MATH  MathSciNet  Google Scholar 

  39. J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006.

    Google Scholar 

  40. H.A. Levine. The role of critical exponents in blowup theorems. SIAM Rev., 32(2):262–288, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  41. Y.-C. Lu. Singularity Theory and an Introduction to Catastrophe Theory. Springer, 1976.

    Google Scholar 

  42. W. Liu, D. Xiao, and Y. Yi. Relaxation oscillations in a class of predator–prey systems. J. Differential Equat., 188(1):306–331, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  43. P. De Maesschalck. Ackerberg-O’Malley resonance in boundary value problems with a turning point of any order. Comm. Pure Appl. Anal., 6(2):311–333, 2007.

    Article  MATH  Google Scholar 

  44. E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov. Asymptotic Methods in Singularly Perturbed Systems. Plenum Press, 1994.

    Google Scholar 

  45. E.F. Mishchenko and N.Kh. Rozov. Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press, 1980.

    Google Scholar 

  46. D. Panazzolo. Resolution of singularities of real-analytic vector fields in dimension three. Acta Math., 197:167–289, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  47. B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discr. Cont. Dyn. Syst., 10:941–964, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  48. B. Sandstede and A. Scheel. Absolute instabilities of standing pulses. Nonlinearity, 18:331–378, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  49. P. Szmolyan and M. Wechselberger. Relaxation oscillations in \(\mathbb{R}^{3}\). J. Differential Equat., 200:69–104, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Wechselberger. Extending Melnikov-theory to invariant manifolds on non-compact domains. Dynamical Systems, 17(3):215–233, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Wlodarczyk. Simple Hironaka resolution in characteristic zero. J. Amer. Math. Soc., 18(4):779–822, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  52. H. Zoldek. Bifurcations of certain family of planar vector fields tangent to axes. J. Differential Equat., 67(1):1–55, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). The Blowup Method. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_7

Download citation

Publish with us

Policies and ethics