Skip to main content

Tracking Invariant Manifolds

  • Chapter
  • First Online:
Book cover Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

  • 5968 Accesses

Abstract

The main goal of this chapter is to discuss the tracking of invariant manifolds when they transition from a fast to a slow motion and vice versa. That is, we would like to understand how trajectories or more general objects enter and leave the vicinity of a normally hyperbolic critical manifold. The main application is to show how the geometric theory of fast–slow systems can be used to prove the persistence of candidate orbits for \(0 <\varepsilon \ll 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. B. Ambrosio and M.A. Aziz-Alaoui. Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput. Math. Appl., 64(5):934–943, 2012.

    Google Scholar 

  2. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

    Google Scholar 

  3. F. Achleitner and C. Kuehn. Traveling waves for a bistable equation with nonlocal-diffusion. arXiv:1312.6304, pages 1–45, 2013.

    Google Scholar 

  4. E. Yanagida amd K. Maginu. Stability of double-pulse solutions in nerve axon equations. SIAM J. Appl. Math., 49(4):1158–1173, 1989.

    Google Scholar 

  5. R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis and Applications. Springer, 1988.

    Google Scholar 

  6. D.G. Aronson and H.F. Weinberger. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In Partial Differential Equations and Related Topics, volume 446 of Lecture Notes in Mathematics, pages 5–49. Springer, 1974.

    Google Scholar 

  7. F. Battelli. Heteroclinic orbits in singular systems: a unifying approach. J. Dyn. Diff. Eq., 6(1): 147–173, 1994.

    MATH  MathSciNet  Google Scholar 

  8. D.C. Bell and B. Deng. Singular perturbation of n-front travelling waves in the FitzHugh–Nagumo equations. Nonl. Anal.: Real World Appl., 3:515–541, 2002.

    Google Scholar 

  9. A. Bose. Symmetric and antisymmetric pulses in parallel coupled nerve fibres. SIAM J. Appl. Math., 55(6):1650–1674, 1995.

    MATH  MathSciNet  Google Scholar 

  10. F. Battelli and K.J. Palmer. Transverse intersection of invariant manifolds in singular systems. J. Different. Equat., 177:77–120, 2001.

    MathSciNet  Google Scholar 

  11. F. Battelli and K.J. Palmer. Singular perturbations, transversality, and Sil’nikov saddle-focus homoclinic orbits. J. Dynam. Different. Equat., 15:357–425, 2003.

    MATH  MathSciNet  Google Scholar 

  12. F. Battelli and K.J. Palmer. Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems. Ukrainian Math. J., 60(1):28–55, 2008.

    MATH  MathSciNet  Google Scholar 

  13. P. Brunovsky. Tracking invariant manifolds without differential forms. Acta Math. Univ. Comenianae, LXV(1):23–32, 1996.

    Google Scholar 

  14. P. Brunovsky. S-shaped bifurcation of a singularly perturbed boundary value problem. J. Differential Equat., 145(1):52–100, 1998.

    MATH  MathSciNet  Google Scholar 

  15. P. Brunovsky. C r-inclination theorems for singularly perturbed equations. J. Differential Equat., 155(1):133–152, 1999.

    MATH  MathSciNet  Google Scholar 

  16. W.-J. Beyn and M. Stiefenhofer. A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems. J. Dyn. Diff. Equat., 11(4):671–709, 1999.

    MATH  MathSciNet  Google Scholar 

  17. G.A. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differential Equat., 23:335–367, 1977.

    MATH  MathSciNet  Google Scholar 

  18. C.-N. Chen and Y.S. Choi. Standing pulse solutions to FitzHugh–Nagumo equations. Arch. Rational Mech. Anal., 206: 741–777, 2012.

    MATH  MathSciNet  Google Scholar 

  19. S.-N. Chow, B. Deng, and B. Fiedler. Homoclinic bifurcation at resonant eigenvalues. J. Dyn. Diff. Eq., 2(2):177–244, 1990.

    MATH  MathSciNet  Google Scholar 

  20. S.-N. Chow, B. Deng, and D. Terman. The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits. SIAM J. Math. Anal., 21(1):179–204, 1990.

    MATH  MathSciNet  Google Scholar 

  21. A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J.D.M. Rademacher. Unfolding a tangent equilibrium-to-periodic heteroclinic cycle. SIAM J. Appl. Dyn. Sys., 8(3): 1261–1304, 2009.

    MATH  MathSciNet  Google Scholar 

  22. E.A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill, 1955.

    Google Scholar 

  23. S.N. Chow and H. Leiva. Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces. J. Differential Equat., 120(2):429–477, 1995.

    MATH  MathSciNet  Google Scholar 

  24. W.A. Coppel. Dichotomies in Stability Theory. Springer, 1978.

    Google Scholar 

  25. J. Cronin, editor. Mathematical Aspects of Hodgkin–Huxley Neural Theory. CUP, 1987.

    Google Scholar 

  26. B. Deng. Homoclinic bifurcations with nonhyperbolic equilibria. SIAM J. Math. Anal., 21(3):693–720, 1990.

    MATH  MathSciNet  Google Scholar 

  27. B. Deng. The existence of infinitely many traveling front and back waves in the FitzHugh–Nagumo equations. SIAM J. Appl. Math., 22(6):1631–1650, 1991.

    MATH  Google Scholar 

  28. B. Deng. Homoclinic twisting bifurcations and cusp horseshoe maps. J. Dyn. Diff. Eq., 5(3):417–467, 1993.

    MATH  Google Scholar 

  29. B. Deng. On Silnikov’s homoclinic saddle-focus theorem. J. Differential Equat., 102:305–329, 1993.

    MATH  Google Scholar 

  30. B. Deng. Sil’nikov-hopf bifurcations. J. Differential Equat., 119:1–23, 1995.

    MATH  Google Scholar 

  31. A. Doelman and G. Hek. Homoclinic saddle-node bifurcations in singularly perturbed systems. J. Dyn. Diff. Eq., 12(1):169–215, 2000.

    MATH  MathSciNet  Google Scholar 

  32. E.N. Dancer, X. Ren, and S. Shusen. On multiple radial solutions of a singularly perturbed nonlinear elliptic system. SIAM J. Math. Anal., 38(6):2005–2041, 2007.

    MATH  MathSciNet  Google Scholar 

  33. W. Eckhaus. Singular perturbations of homoclinic orbits in \(\mathbb{R}^{4}\). SIAM J. Math. Anal., 23(5):1269–1290, 1992.

    MATH  MathSciNet  Google Scholar 

  34. J.W. Evans, N. Fenichel, and J.A. Feroe. Double impulse solutions in nerve axon equations. SIAM J. Appl. Math., 42(2): 219–234, 1982.

    MATH  MathSciNet  Google Scholar 

  35. B. Eisenberg and W. Liu. Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal., 38(6):1932–1966, 2007.

    MATH  MathSciNet  Google Scholar 

  36. M. Fečkan. Bifurcation of multi-bump homoclinics in systems with normal and slow variables. Electron. J. Differential Equations, 41:1–17, 2000.

    Google Scholar 

  37. J.A. Feroe. Temporal stability of solitary impulse solutions of a nerve equation. Biophys. J., 21(2): 103–110, 1978.

    Google Scholar 

  38. J.A. Feroe. Traveling waves of infinitely many pulses in nerve equations. Math. Biosci., 55(3):189–203, 1981.

    MATH  MathSciNet  Google Scholar 

  39. J.A. Feroe. Existence and stability of multiple impulse solutions of a nerve equation. SIAM J. Appl. Math., 42(2):235–246, 1982.

    MATH  MathSciNet  Google Scholar 

  40. R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics, 17:257–269, 1955.

    Google Scholar 

  41. R. FitzHugh. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol., 43:867–896, 1960.

    Google Scholar 

  42. R. FitzHugh. Impulses and physiological states in models of nerve membranes. Biophys. J., 1:445–466, 1961.

    Google Scholar 

  43. A.C. Fowler and G. Kember. The Lorenz-Krishnamurthy slow manifold. J. Atmospheric Sci., 53(10):1433–1437, 1996.

    MathSciNet  Google Scholar 

  44. B. Guo and H. Chen. Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schrödinger equation. Comm. Nonl. Sci. Numer. Simul., 9(4):431–441, 2004.

    MATH  Google Scholar 

  45. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.

    MATH  Google Scholar 

  46. J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.

    MATH  MathSciNet  Google Scholar 

  47. J. Gruendler. Homoclinic solutions and chaos in ordinary differential equations with singular perturbations. Trans. Amer. Math. Soc., 350(9):3797–3814, 1998.

    MATH  MathSciNet  Google Scholar 

  48. I. Gasser and P. Szmolyan. A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal., 24(4):968–986, 1993.

    MATH  MathSciNet  Google Scholar 

  49. I. Gasser and P. Szmolyan. Detonation and deflagration waves with multistep reaction schemes. SIAM J. Appl. Math., 55(1): 175–191, 1995.

    MATH  MathSciNet  Google Scholar 

  50. I. Gasser and P. Szmolyan. The frozen flow and the equilibrium limits in a polyatomic gas with relaxation effects. Math. Mod. Meth. Appl. Sci., 11(1):87–104, 2001.

    MATH  MathSciNet  Google Scholar 

  51. S.V. Gonchenko, D.V. Turaev, P. Gaspard, and G. Nicolis. Complexity in the bifurcation structure of homoclinic loops to a saddle-focus. Nonlinearity, 10:409–423, 1997.

    MATH  MathSciNet  Google Scholar 

  52. S.P. Hastings. Some mathematical problems from neurobiology. The American Mathematical Monthly, 82(9):881–895, 1975.

    MATH  MathSciNet  Google Scholar 

  53. S.P. Hastings. On the existence of homoclinic and periodic orbits in the FitzHugh–Nagumo equations. Quart. J. Math. Oxford, 2(27):123–134, 1976.

    MathSciNet  Google Scholar 

  54. S.P. Hastings. On travelling wave solutions of the Hodgkin–Huxley equations. Arch. Rat. Mech. Anal., 60(3):229–257, 1976.

    MATH  MathSciNet  Google Scholar 

  55. S.P. Hastings. Single and multiple pulse waves for the FitzHugh–Nagumo. SIAM J. Appl. Math., 42(2):247–260, 1982.

    MATH  MathSciNet  Google Scholar 

  56. A.J. Homburg and B. Krauskopf. Resonant homoclinic flip bifurcations. J. Dyn. Diff. Eq., 12(4): 807–850, 2000.

    MATH  MathSciNet  Google Scholar 

  57. M. Hayes, T.J. Kaper, N. Kopell, and K. Ono. On the application of geometric singular perturbation theory to some classical two point boundary value problems. Int. J. Bif. Chaos, 8(2): 189–209, 1998.

    MATH  MathSciNet  Google Scholar 

  58. A.J. Homburg, H. Kokubu, and V. Naudot. Homoclinic-doubling cascades. Arch. Rational Mech. Anal., 160:195–243, 2001.

    MATH  MathSciNet  Google Scholar 

  59. A.J. Homburg and B. Sandstede. Homoclinic and heteroclinic bifurcations in vector fields. In H. Broer, F. Takens, and B. Hasselblatt, editors, Handbook of Dynamical Systems III, pages 379–524. Elsevier, 2010.

    Google Scholar 

  60. G. Haller and S. Wiggins. Orbits homoclinic to resonances: the Hamiltonian case. Physica D, 66(3):298–346, 1993.

    MATH  MathSciNet  Google Scholar 

  61. G. Haller and S. Wiggins. N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems. Arch. Rat. Mach. Anal., 130(1):25–101, 1995.

    MATH  MathSciNet  Google Scholar 

  62. C.-H. Hsu, T.-H. Yang, and C.-R. Yang. Diversity of traveling wave solutions in FitzHugh–Nagumo type equations. J. Differential Equat., 247(4):1185–1205, 2009.

    MATH  MathSciNet  Google Scholar 

  63. T. Ikeda and Y. Nishiura. Pattern selection for two breathers. SIAM J. Appl. Math., 54(1):195–230, 1994.

    MATH  MathSciNet  Google Scholar 

  64. K. Jänich. Vector Analysis. Springer, 2001.

    Google Scholar 

  65. C.K.R.T. Jones and N. Kopell. Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Differential Equat., 108(1):64–88, 1994.

    MATH  MathSciNet  Google Scholar 

  66. C.K.R.T. Jones, T.J. Kaper, and N. Kopell. Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal., 27(2):558–577, 1996.

    MATH  MathSciNet  Google Scholar 

  67. C.K.R.T. Jones, N. Kopell, and R. Langer. Construction of the FitzHugh–Nagumo pulse using differential forms. In Multiple-Time-Scale Dynamical Systems, pages 101–113. Springer, 2001.

    Google Scholar 

  68. C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 286(2): 431–469, 1984.

    MATH  MathSciNet  Google Scholar 

  69. C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.

    Google Scholar 

  70. C.K.R.T. Jones and J.E. Rubin. Existence of standing pulse solutions to an inhomogeneous reaction–diffusion system. J. Dyn. Diff. Eq., 10(1):1–35, 1998.

    MATH  MathSciNet  Google Scholar 

  71. C.K.R.T. Jones and S.-K. Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discr. Cont. Dyn. Syst. S, 2(4):967–1023, 2009.

    MATH  MathSciNet  Google Scholar 

  72. T. Kapitula. Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear Schrödinger equation. Proc. R. Soc. Edinburgh A, 128(3):585–629, 1998.

    MATH  MathSciNet  Google Scholar 

  73. B. Kazmierczak. Travelling waves in a system modelling laser sustained plasma. Z. Angew. Math. Phys., 51(2):304–317, 2000.

    MATH  MathSciNet  Google Scholar 

  74. Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi. Belyakov homoclinic bifurcations in a tritrophic food chain model. SIAM J. Appl. Math., 62(2):462–487, 2001.

    MATH  MathSciNet  Google Scholar 

  75. T.J. Kaper and C.K.R.T. Jones. A primer on the exchange lemma for fast–slow systems. In Multiple-Time-Scale Dynamical Systems, pages 65–88. Springer, 2001.

    Google Scholar 

  76. P.G. Kevrekidis, C.K.R.T. Jones, and T. Kapitula. Exponentially small splitting of heteroclinc orbits: from the rapidly forced pendulum to discrete solitons. Phys. Lett. A, 269(2): 120–129, 2000.

    MATH  MathSciNet  Google Scholar 

  77. T.J. Kaper and G. Kovacic. Multi-bump orbits homoclinic to resonance bands. Trans. Amer. Math. Soc., 348:3835–3888, 1996.

    MATH  MathSciNet  Google Scholar 

  78. M. Kisaka, H. Kokubu, and H. Oka. Bifurcations to n-homoclinic orbits and n-periodic orbits in vector fields. J. Dyn. Diff. Eq., 5(2):305–357, 1996.

    MathSciNet  Google Scholar 

  79. H. Kokubu, M. Komuro, and H. Oka. Multiple homoclinic bifurcations from orbit-flip. I. Successive homoclinic doublings. Int. J. Bif. Chaos, 6(5):833–850, 1996.

    Google Scholar 

  80. H. Kurland and M. Levi. Transversal heteroclinic intersections in slowly varying systems. In Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, pages 29–38. Springer, 1988.

    Google Scholar 

  81. Y.A. Kuznetsov, S. Muratori, and S. Rinaldi. Homoclinic bifurcations in slow–fast second order systems. Nonl. Anal.: Theory, Methods & Appl., 25(7):747–767, 1995.

    Google Scholar 

  82. G. Kovacic. Dissipative dynamics of orbits homoclinic to a resonance band. Phys. Lett. A, 167(2): 143–150, 1992.

    MathSciNet  Google Scholar 

  83. G. Kovacic. Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems. J. Dyn. Diff. Eq., 5(4):559–597, 1993.

    MATH  MathSciNet  Google Scholar 

  84. G. Kovacic. Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems. SIAM J. Math. Anal., 26(6):1611–1643, 1995.

    MATH  MathSciNet  Google Scholar 

  85. G.A. Klaasen and W.C. Troy. Stationary wave solutions of a system of reaction–diffusion equations derived from the FitzHugh–Nagumo equations. SIAM J. Appl. Math., 44(1):96–110, 1984.

    MATH  MathSciNet  Google Scholar 

  86. Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.

    MATH  Google Scholar 

  87. J.M. Lee. Introduction to Smooth Manifolds. Springer, 2006.

    Google Scholar 

  88. X.-B. Lin. Heteroclinic bifurcation and singularly perturbed boundary value problems. J. Differential Equat., 84:319–382, 1990.

    MATH  Google Scholar 

  89. X.-B. Lin. Algebraic dichotomies with an application to the stability of Riemann solutions of conservation laws. J. Differential Equat., 11(1):2924–2965, 2009.

    Google Scholar 

  90. D. Liu. Exchange lemmas for singular perturbation problems with certain turning points. J. Differential Equat., 167:134–180, 2000.

    MATH  Google Scholar 

  91. W. Liu. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math., 65(3):754–766, 2005.

    MATH  MathSciNet  Google Scholar 

  92. W. Liu. Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas. J. Dyn. Diff. Eq., 18(3):667–691, 2006.

    MATH  Google Scholar 

  93. W. Liu and E. Van Vleck. Turning points and traveling waves in FitzHugh–Nagumo type equations. J. Differential Equat., 225(2):381–410, 2006.

    MATH  Google Scholar 

  94. W. Liu and B. Wang. Poisson–Nernst–Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Eq., 22(3):413–437, 2010.

    MATH  Google Scholar 

  95. H.P. McKean. Nagumo’s equation. Adv. Math., 4:209–223, 1970.

    MATH  MathSciNet  Google Scholar 

  96. V. Moll and S.I. Rosencrans. Calculation of the threshold surface for nerve equations. SIAM J. Appl. Math., 50:1419–1441, 1990.

    MATH  MathSciNet  Google Scholar 

  97. D. McLaughlin and J. Shatah. Melnikov analysis for PDE’s. In P. Deift, C.D. Levermore, and C.E. Wayne, editors, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), pages 51–100. AMS, 1996.

    Google Scholar 

  98. J.R. Munkres. Analysis on Manifolds. Westview Press, 1997.

    Google Scholar 

  99. J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50:2061–2070, 1962.

    Google Scholar 

  100. S. Nii. N-homoclinic bifurcations for homoclinic orbits changing their twisting. J. Dyn. Diff. Eq., 8(4):549–572, 1996.

    MATH  MathSciNet  Google Scholar 

  101. K.J. Palmer. Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations. J. Differential Equat., 46(3):324–345, 1982.

    MATH  Google Scholar 

  102. K.J. Palmer. Exponential dichotomies and transversal homoclinic points. J. Differential Equat., 55: 225–256, 1984.

    MATH  Google Scholar 

  103. K.J. Palmer. Exponential dichotomies and Fredholm operators. Proc. Amer. Math. Soc., 104:149–156, 1988.

    MATH  MathSciNet  Google Scholar 

  104. J.D.M. Rademacher. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit. J. Differential Equat., 218:390–443, 2005.

    MATH  MathSciNet  Google Scholar 

  105. J. Rinzel. Spatial stability of traveling wave solutions of a nerve conduction equation. Biophys. J., 15(10):975–988, 1975.

    Google Scholar 

  106. J. Rinzel. Repetitive activity and Hopf bifurcation under point-stimulation for a simple FitzHugh–Nagumo nerve conduction model. J. Math. Biol., 5(4):363–382, 1977.

    MathSciNet  Google Scholar 

  107. J. Rinzel and J.B. Keller. Traveling wave solutions of a nerve conduction equation. Biophys. J., 13(12):1313–1337, 1973.

    Google Scholar 

  108. J. Rinzel and D. Terman. Propagation phenomena in a bistable reaction–diffusion system. SIAM J. Appl. Math., 42(5):1111–1137, 1982.

    MATH  MathSciNet  Google Scholar 

  109. K. Sakamoto. Invariant manifolds in singular perturbation problems for ordinary differential equations. Proc. Royal Soc. Ed., 116:45–78, 1990.

    MATH  MathSciNet  Google Scholar 

  110. B. Sandstede. Constructing dynamical systems having homoclinic bifurcation points of codimension two. J. Dyn. Diff. Eq., 9(2):269–288, 1995.

    MathSciNet  Google Scholar 

  111. B. Sandstede. Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh–Nagumo equation. SIAM J. Math. Anal., 29(1):183–207, 1998.

    MATH  MathSciNet  Google Scholar 

  112. B. Sandstede, S. Balasuriya, C.K.R.T. Jones, and P. Miller. Melnikov theory for finite-time vector fields. Nonlinearity, 13(4):1357, 2000.

    Google Scholar 

  113. S. Schecter. Exchange lemmas 1: Deng’s lemma. J. Differential Equat., 245(2):392–410, 2008.

    MATH  MathSciNet  Google Scholar 

  114. S. Schecter. Exchange lemmas 2: general exchange lemma. J. Differential Equat., 245(2):411–441, 2008.

    MATH  MathSciNet  Google Scholar 

  115. L.P. Shilnikov. A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl., 6:163–166, 1965.

    Google Scholar 

  116. P. Soravia and E. Panagiotis. Phase-field theory for FitzHugh–Nagumo-type systems. SIAM J. Math. Anal., 27(5):1341–1359, 1996.

    MATH  MathSciNet  Google Scholar 

  117. M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish, 1999. Volumes 1–5.

    Google Scholar 

  118. C. Soto-Trevino. A geometric method for periodic orbits in singularly-perturbed systems. In C.K.R.T. Jones, editor, Multiple Time Scale Dynamical Systems, volume 122 of The IMA Volumes in Mathematics and its Applications, pages 141–202. Springer, 2001.

    Google Scholar 

  119. C. Soto-Trevino and T.J. Kaper. Higher-order Melnikov theory for adiabatic systems. J. Math. Phys., 37:6220–6250, 1996.

    MATH  MathSciNet  Google Scholar 

  120. P. Szmolyan. Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differential Equat., 92:252–281, 1991.

    MATH  MathSciNet  Google Scholar 

  121. P. Szmolyan. Analysis of a singularly perturbed traveling-wave problem. SIAM J. Appl. Math., 52(2):485–493, 1992.

    MATH  MathSciNet  Google Scholar 

  122. S.-K. Tin. On the dynamics of tangent spaces near normally hyperbolic manifolds and singularly perturbed boundary value problems. PhD thesis - Brown University, 1994.

    Google Scholar 

  123. S.-K. Tin. Transversality of double-pulse homoclinic orbits in the inviscid Lorenz-Krishnamurthy system. Physica D, 83(4):383–408, 1995.

    MATH  MathSciNet  Google Scholar 

  124. J.J. Tyson and J.P. Keener. Singular perturbation theory of traveling waves in excitable media (a review). Physica D, 32(3):327–361, 1988.

    MATH  MathSciNet  Google Scholar 

  125. S.-K. Tin, N. Kopell, and C.K.R.T. Jones. Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal., 31(6):1558–1576, 1994.

    MATH  MathSciNet  Google Scholar 

  126. J. Vanneste. Asymptotics of a slow manifold. SIAM J. Appl. Dyn. Sys., 7(4):1163–1190, 2008.

    MATH  MathSciNet  Google Scholar 

  127. M. Wechselberger. Extending Melnikov-theory to invariant manifolds on non-compact domains. Dynamical Systems, 17(3):215–233, 2002.

    MATH  MathSciNet  Google Scholar 

  128. S. Wieczorek and B. Krauskopf. Bifurcations of n-homoclinic orbits in optically injected lasers. Nonlinearity, 18:1095–1125, 2005.

    MATH  MathSciNet  Google Scholar 

  129. F. Xie, M. Han, and W. Zhang. Singular homoclinic bifurcations in a planar fast–slow system. J. Dyn. Contr. Syst., 11(3):433–448, 2005.

    MATH  MathSciNet  Google Scholar 

  130. F. Xie. On a class of singular boundary value problems with singular perturbation. J. Differential Equat., 252:2370–2387, 2012.

    MATH  Google Scholar 

  131. E. Yanagida. Branching of double pulse solutions from single pulse solutions in nerve axon equation. J. Differential Equat., 66:243–262, 1987.

    MATH  MathSciNet  Google Scholar 

  132. E. Yanagida. Existence of periodic travelling wave solutions of reaction–diffusion systems with fast–slow dynamics. J. Differential Equat., 76:115–134, 1988.

    MATH  MathSciNet  Google Scholar 

  133. E. Yanagida. Stability of travelling front solutions of the FitzHugh–Nagumo equations. Math. Comput. Modelling, 12(3):289–301, 1989.

    MATH  MathSciNet  Google Scholar 

  134. E.P. Zemskov and I.R. Epstein. Wave propagation in a FitzHugh–Nagumo-type model with modified excitability. Phys. Rev. E, 82:026207, 2010.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Tracking Invariant Manifolds. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_6

Download citation

Publish with us

Policies and ethics