Skip to main content

Normal Forms

  • Chapter
  • First Online:
Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

  • 6051 Accesses

Abstract

Having developed the main theorems of perturbations of invariant manifolds, we aim to bring a fast–slow system into normal form . As this book was written, there was no complete general theory for what a “normal form” for a fast–slow system should be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. O. Alvarez and M. Bardi. Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim., 40(4):1159–1188, 2002.

    Article  MathSciNet  Google Scholar 

  2. E.H. Abed. Multiparameter singular perturbation problems: iterative expansions and asymptotic stability. Syst. Contr. Lett., 5(4):279–282, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  3. E.H. Abed. Decomposition and stability for multiparameter singular perturbation problems. IEEE Transactions on Automatic Control, 31(10):925–934, 1986.

    Article  MATH  Google Scholar 

  4. E.H. Abed. Strong D-stability. Syst. Contr. Lett., 7(3):207–212, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Avendano-Camacho and Yu. Vorobiev. On the global structure of normal forms for slow–fast Hamiltonian systems. Russ. J. Math. Phys., pages 138–148, 2013.

    Google Scholar 

  6. Z. Artstein and V. Gaitsgory. Tracking fast trajectories along a slow dynamics: a singular perturbations approach. SIAM J. Contr. Optim., 35:1487, 1997.

    MATH  MathSciNet  Google Scholar 

  7. Z. Artstein and V. Gaitsgory. The value function of singularly perturbed control systems. Appl. Math. Optim., 41:425–445, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

    Google Scholar 

  9. D. Altshuler and A.H. Haddad. Near optimal smoothing for singularly perturbed linear systems. Automatica, 14:81–87, 1978.

    Article  MATH  Google Scholar 

  10. A.N. Atassi and H.K. Khalil. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Syst. Contr. Lett., 39(3):183–191, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.D. Ardema. Nonlinear singularly perturbed optimal control problems with singular arcs. Automatica, 16:99–104, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  12. V.I. Arnold. Ordinary Differential Equations. MIT Press, 1973.

    Google Scholar 

  13. V.I. Arnold. Catastrophe Theory. Springer, 1992.

    Google Scholar 

  14. V.I. Arnold. Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, 1994.

    Google Scholar 

  15. Z. Artstein. Bang-bang controls in the singular perturbations limit. Control and Cybernetics, 34(3): 645–663, 2005.

    MATH  MathSciNet  Google Scholar 

  16. Z. Artstein. Pontryagin Maximum Principle for coupled slow and fast systems. Control and Cybernetics, 38(4):1003–1019, 2009.

    MATH  MathSciNet  Google Scholar 

  17. S. Ahmed-Zaid, P. Sauer, M. Pai, and M. Sarioglu. Reduced order modeling of synchronous machines using singular perturbation. IEEE Trans. Circ. Syst., 29(11):782–786, 1982.

    Article  MATH  Google Scholar 

  18. M.J. Balas. Reduced-order feedback control of distributed parameter systems via singular perturbation methods. J. Math. Anal. Appl., 87:281–294, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Bensoussan and G.L. Blankenship. Singular perturbations in stochastic control. In Singular Perturbations and Asymptotic Analysis in Control Systems, volume 90 of Lecture Notes in Control and Information Sciences, pages 171–260. Springer, 1987.

    Google Scholar 

  20. S.V. Belokopytov and M.G. Dmitriev. Direct scheme in optimal control problems with fast and slow motions. Syst. Contr. Lett., pages 129–135, 1986.

    Google Scholar 

  21. J.P. Barbot, M. Djemai, S. Monaco, and D. Normand-Cyrot. Analysis and control of nonlinear singularly perturbed systems under sampling. Control and Dynamic Systems, 79:203–246, 1996.

    Article  Google Scholar 

  22. E. Benoît. Systems lents-rapides dans \(\mathbb{R}^{3}\) et leurs canards. In Third Snepfenried geometry conference, volume 2, pages 159–191. Soc. Math. France, 1982.

    Google Scholar 

  23. A. Bensoussan. On some singular perturbation problems arising in stochastic control. Stoch. Anal. Appl., 2:13–53, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  24. I. Borno and Z. Gajic. Parallel algorithms for optimal control of weakly coupled and singularly perturbed jump linear systems. Automatica, 31(7):985–988, 1988.

    Article  MathSciNet  Google Scholar 

  25. J.J.W. Bruce and P.J. Giblin. Curves and Singularities: a geometrical introduction to singularity theory. CUP, 1992.

    Google Scholar 

  26. V.S. Borkar and V. Gaitsgory. Singular perturbations in ergodic control of diffusions. SIAM J. Control Optim., 46:1562–1577, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Blankenship. Singularly perturbed difference equations in optimal control problems. IEEE Trans. Auto. Contr., 1981:911–917, 1981.

    Article  MathSciNet  Google Scholar 

  28. V.N. Bogaevski and A. Povzner. Algebraic Methods in Nonlinear Perturbation Theory. Springer, 1991.

    Google Scholar 

  29. S.L. Campbell. Singular perturbation of autonomous linear systems, II. J. Differential Equat., 29(3):362–373, 1978.

    Article  MATH  Google Scholar 

  30. P.D. Christofides and P. Daoutidis. Compensation of measurable disturbances for two-time-scale nonlinear systems. Automatica, 32(11):1553–1573, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Coumarbatch and Z. Gajic. Exact decomposition of the algebraic Riccati equation of deterministic multimodeling optimal control problems. IEEE Trams. Aut. Contr., 45(4):790–794, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  32. C. Chicone. Ordinary Differential Equations with Applications. Texts in Applied Mathematics. Springer, 2nd edition, 2010.

    Google Scholar 

  33. J.H. Chow. Preservation of controllability in linear time-invariant perturbed systems. Int. J. Contr., 25(5):697–704, 1977.

    Article  MATH  Google Scholar 

  34. J.H. Chow. Asymptotic stability of a class of non-linear singularly perturbed systems. J. Frank. Inst., 305(5):275–281, 1978.

    Article  MATH  Google Scholar 

  35. J.H. Chow. A class of singularly perturbed, nonlinear, fixed-endpoint control problems. J. Optim. Theor. Appl., 29(2):231–251, 1979.

    Article  MATH  Google Scholar 

  36. P.D. Christofides. Robust output feedback control of nonlinear singularly perturbed systems. Automatica, 36(1):45–52, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  37. J.H. Chow and P.V. Kokotovic. A decomposition of near-optimum regulators for systems with slow and fast modes. IEEE Trans. Aut. Contr., 21(5):701–705, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  38. J.H. Chow and P.V. Kokotovic. Near-optimal feedback stabilization of a class of nonlinear singularly perturbed systems. SIAM J. Contr. Optim., 16(5):756–770, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  39. J.H. Chow and P.V. Kokotovic. Two-time-scale feedback design of a class of nonlinear systems. IEEE Trans. Aut. Contr., 23(3):438–443, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  40. A.J. Calise, J.V.R. Prasad, and B. Siciliano. Design of optimal output feedback compensators in two-time scale systems. IEEE Trans. Auto. Contr., 35(4):488–492, 1990.

    Article  MATH  Google Scholar 

  41. S.L. Campbell and N.J. Rose. Singular perturbation of autonomous linear systems. SIAM J. Math. Anal., 10(3):542–551, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  42. A.L. Dontchev and T.R. Giocev. Convex singularly perturbed optimal control problem with fixed final state, controllability and convergence. Optimization, 10(3):345–355, 1979.

    MATH  MathSciNet  Google Scholar 

  43. V. Dragan and A. Halanay. Suboptimal stabilization of linear systems with several time scales. Int. J. Contr., 36:109–126, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  44. M.G. Dmitriev and A.M. Klishevic. Iterative solution of optimal control problems with fast and slow motions. Syst. Contr. Lett., 4(4):223–226, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  45. M.G. Dmitriev and G.A. Kurina. Singular perturbations in control problems. Autom. Remote Contr., 67:1–43, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  46. M.G. Dmitriev. On a class of singularly. perturbed problems of optimal control. J. Appl. Math. Mech., 42(2):238–242, 1978.

    Google Scholar 

  47. A.L. Dontchev. Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, volume 52 of Lect. Notes Contr. Inf. Sci. Springer, 1983.

    Google Scholar 

  48. A.L. Dontchev. Time-scale decomposition of the reachable set of constrained linear systems. Math. Contr. Sign. Syst., 5(3):327–340, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  49. A.L. Dontchev and J.I. Slavov. Lipschitz properties of the attainable set of singularly perturbed linear systems. Syst. Contr. Lett., 11(5):385–391, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  50. A.L. Dontchev and V. Veliov. Singular perturbation in Mayer’s problem for linear systems. SIAM J. Control Optim., 21(4):566–581, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  51. H. Eyad and L. André. On the stability of multiple time-scale systems. Int. J. Contr., 44:211–218, 1986.

    Article  MATH  Google Scholar 

  52. N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. J. Differential Equat., 31:53–98, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  53. A.J. Fossard, J. Foisneau, and T.H. Huynh. Approximate closed-loop optimization of nonlinear systems by singular perturbation technique. In Nonlinear Systems, pages 189–246. Springer, 1997.

    Google Scholar 

  54. M.I. Freedman and B. Granhoff. Formal asymptotic solution of a singularly perturbed nonlinear optimal control problem. J. Optim. Theor. Appl., 19(2):301–325, 1976.

    Article  MATH  Google Scholar 

  55. J.A. Filar, V. Gaitsgory, and A.B. Haurie. Control of singularly perturbed hybrid stochastic systems. IEEE Trans. Aut. Contr., 46(2):179–190, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  56. M.I. Freedman and J.L. Kaplan. Singular perturbations of two-point boundary value problems arising in optimal control. SIAM J. Contr. Optim., 14(2):189–215, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  57. B.A. Francis. Convergence in the boundary layer for singularly perturbed equations. Automatica, 18(1):57–62, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  58. E. Fridman. A descriptor system approach to nonlinear singularly perturbed optimal control problem. Automatica, 37(4):543–549, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  59. E. Fridman. Robust sampled-data H control of linear singularly perturbed systems. IEEE Transations on Automatic Control, 51(3):470–475, 2006.

    Article  MathSciNet  Google Scholar 

  60. V. Gaitsgory. Suboptimization of singularly perturbed control systems. SIAM J. Contr. Optim., 30(5):1228–1249, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  61. V. Gaitsgory. On a representation of the limit occupational measures set of a control system with applications to singularly perturbed control systems. SIAM J. Contr. Optim., 43(1):325–340, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  62. Z. Gajić. Numerical fixed-point solution for near-optimum regulators of linear quadratic gaussian control problems for singularly perturbed systems. Int. J. Contr., 43(2):373–387, 1986.

    Article  MATH  Google Scholar 

  63. Z. Gajić. The existence of a unique and bounded solution of the algebraic Riccati equation of multimodel estimation and control problems. Syst. Contr. Lett., 10(3):185–190, 1988.

    Article  MATH  Google Scholar 

  64. M. Golubitsky and V. Guillemin. Stable Mappings and their Singularities. Springer, 1974.

    Google Scholar 

  65. T. Grodt and Z. Gajic. The recursive reduced-order numerical solution of the singularly perturbed matrix differential Riccati equation. IEEE Trans. Aut. Contr., 33(8):751–754, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  66. V. Gaitsgory and G. Grammel. On the construction of asymptotically optimal controls for singularly perturbed systems. Syst. Contr. Lett., 30(2):139–147, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  67. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, 1983.

    Book  MATH  Google Scholar 

  68. R. Gilmore. Catastrophe Theory for Scientists and Engineers. Dover, 1993.

    Google Scholar 

  69. Z. Gajić and H. Khalil. Multimodel strategies under random disturbances and imperfect partial observations. Automatica, 22(1):121–125, 1986.

    Article  MATH  Google Scholar 

  70. Z. Gajić and M.-T. Lim. Optimal Control of Singularly Perturbed Linear Systems and Applications. Marcel Dekker, 2001.

    Google Scholar 

  71. E.V. Goncharova and A.I. Ovseevich. Asymptotic estimates for reachable sets of singularly perturbed linear systems. Diff. Uravneniya, 46(12):1737–1748, 2010.

    MATH  MathSciNet  Google Scholar 

  72. Z. Gajić, D. Petkovski, and X. Shen. Singularly perturbed and weakly coupled linear control systems: a recursive approach. Springer, 1990.

    Google Scholar 

  73. M. Golubitsky and D. Schaeffer. Singularities and Groups in Bifurcation Theory, volume 1. Springer, 1985.

    Google Scholar 

  74. M. Golubitsky, D. Schaeffer, and I. Stewart. Singularities and Groups in Bifurcation Theory, volume 2. Springer, 1985.

    Google Scholar 

  75. M. Grossglauser and D.N. Tse. A time-scale decomposition approach to measurement-based admission control. IEEE/ACM Trans. Netw., 11(4):550–563, 2003.

    Article  Google Scholar 

  76. A. Haddad and P. Kokotovic. Note on singular perturbation of linear state regulators. IEEE Trans. Aut. Contr., 16(3):279–281, 1971.

    Article  Google Scholar 

  77. A. Haddad and P. Kokotovic. Stochastic control of linear singularly perturbed systems. IEEE Trans. Aut. Contr., 22(5):815–821, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  78. M.W. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, 2nd edition, 2003.

    Google Scholar 

  79. P. Ioannou and P. Kokotovic. Decentralized adaptive control of interconnected systems with reduced-order models. Automatica, 21(4):401–412, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  80. Yu. Ilyashenko. Embedding theorems for local maps, slow–fast systems and bifurcation from Morse–Smale to Morse–Williams. Amer. Math. Soc. Transl., 180(2):127–139, 1997.

    MathSciNet  Google Scholar 

  81. A. Isidori, S.S. Sastry, P.V. Kokotovic, and C.I. Byrnes. Singularly perturbed zero dynamics of nonlinear systems. IEEE Trans. Auto. Contr., 37(10):1625–1631, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  82. S.H. Javid. The time-optimal control of a class of non-linear singularly perturbed systems. Int. J. Contr., 27(6):831–836, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  83. S.H. Javid and P.V. Kokotovic. A decomposition of time scales for iterative computation of time-optimal controls. J. Optim. Theor. Appl., 21(4):459–468, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  84. C.K.R.T. Jones, T.J. Kaper, and N. Kopell. Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal., 27(2):558–577, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  85. C.K.R.T. Jones. Geometric singular perturbation theory. In Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lect. Notes Math., pages 44–118. Springer, 1995.

    Google Scholar 

  86. T.J. Kaper. An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In J. Cronin and R.E. O’Malley, editors, Analyzing Multiscale Phenomena Using Singular Perturbation Methods, pages 85–131. Springer, 1999.

    Google Scholar 

  87. V. Kecman, S. Bingulac, and Z. Gajic. Eigenvector approach for order-reduction of singularly perturbed linear-quadratic optimal control problems. Automatica, 35(1):151–158, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  88. H.K. Khalil and F.C. Chen. H -control of two-time-scale systems. Syst. Contr. Lett., 19(1):35–42, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  89. A. Kumar, P.D. Christofides, and P. Daoutidis. Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity. Chem. Engineer. Sci., 53(8):1491–1504, 1998.

    Article  Google Scholar 

  90. S. Koskie, C. Coumarbatch, and Z. Gajic. Exact slow–fast decomposition of the singularly perturbed matrix differential Riccati equation. Appl. Math. Comput., 216(5):1401–1411, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  91. H.K. Khalil and Z. Gajic. Near-optimum regulators for stochastic linear singularly perturbed systems. IEEE Trans. Aut. Contr., 29(6):531–541, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  92. P.V. Kokotovic and A. Haddad. Controllability and time-optimal control of systems with slow and fast modes. IEEE Trans. Aut. Contr., 20(1):111–113, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  93. H.K. Khalil and Y.N. Hu. Steering control of singularly perturbed systems: a composite control approach. Automatica, 25(1):65–75, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  94. H.K. Khalil. Stabilization of multiparameter singularly perturbed systems. IEEE Trans. Aut. Contr., 24(5):790–791, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  95. H.K. Khalil. Feedback control of nonstandard singularly perturbed systems. IEEE Trans. Aut. Contr., 34(10):1052–1060, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  96. K. Khorasani. Robust stabilization of non-linear systems with unmodelled dynamics. Int. J. Control, 50(3):827–844, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  97. T.J. Kaper and C.K.R.T. Jones. A primer on the exchange lemma for fast–slow systems. In Multiple-Time-Scale Dynamical Systems, pages 65–88. Springer, 2001.

    Google Scholar 

  98. P.V. Kokotovic, R.E. O’Malley Jr, and P. Sannuti. Singular perturbations and order reduction in control theory - an overview. Automatica, 12(2):123–132, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  99. K. Khorasani and P.V. Kokotovic. A corrective feedback design for nonlinear systems with fast actuators. IEEE Trans Aut. Contr., 31(1):67–69, 1986.

    Article  MATH  Google Scholar 

  100. P. Kokotovic, H.K. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design. SIAM, 1999.

    Google Scholar 

  101. P.V. Kokotovic. A Riccati equation for block-diagonalization of ill-conditioned systems. IEEE Trans. Aut. Contr., 20(6):812–814, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  102. P.V. Kokotovic. Subsystems, time scales and multimodeling. Automatica, 17(6):789–795, 1981.

    Article  MATH  Google Scholar 

  103. P.V. Kokotovic. Applications of singular perturbation techniques to control problems. SIAM Rev., 26(4):501–550, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  104. Y.M. Kabanov and S.M. Pergamenshchikov. On optimal control of singularly perturbed stochastic differential equations. In Modeling, Estimation and Control of Systems with Uncertainty, pages 200–209. Birkhäuser, 1991.

    Google Scholar 

  105. Y.M. Kabanov and S.M. Pergamenshchikov. Optimal control of singularly perturbed stochastic linear systems. Stochastics, 36(2):109–135, 1991.

    MATH  MathSciNet  Google Scholar 

  106. Y.M. Kabanov and S.M. Pergamenshchikov. On convergence of attainability sets for controlled two-scale stochastic linear systems. SIAM J. Contr. Optim., 35(1):134–159, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  107. Y.M. Kabanov and W.J. Runggaldier. On control of two-scale stochastic systems with linear dynamics in the fast variables. Math. Contr. Sig. Syst., 9(2):107–122, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  108. P. Kokotovic, B. Riedle, and L. Praly. On a stability criterion for continuous slow adaptation. Syst. Contr. Lett., 6(1):7–14, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  109. P. Kokotovic and P. Sannuti. Singular perturbation method for reducing the model order in optimal control design. IEEE Trans. Aut. Contr., 13(4):377–384, 1968.

    Article  Google Scholar 

  110. M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions. SIAM J. Math. Anal., 33(2):286–314, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  111. C.F. Kung. Singular perturbation of an infinite interval linear state regulator problem in optimal control. J. Math. Anal. Appl., 55(2):365–374, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  112. Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.

    Book  MATH  Google Scholar 

  113. P. Kokotovic and R. Yackel. Singular perturbation of linear regulators: basic theorems. IEEE Trans. Aut. Contr., 17(1):29–37, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  114. M.T. Lim and Z. Gajic. Reduced-order H optimal filtering for systems with slow and fast modes. IEEE Tans. Circ. Syst., 47(2):250–254, 2000.

    Article  Google Scholar 

  115. B. Litkouhi and H. Khalil. Infinite-time regulators for singularly perturbed difference equations. Int. J. Contr., 39(3):587–598, 1984.

    Article  MATH  Google Scholar 

  116. B. Litkouhi and H. Khalil. Multirate and composite control of two-time-scale discrete-time systems. IEEE Trans. Aut. Contr., 30(7):645–651, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  117. G.S. Ladde and D.D. Siljak. Multiparameter singular perturbations of linear systems with multiple time scales. Automatica, 19(4):385–394, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  118. Y.-C. Lu. Singularity Theory and an Introduction to Catastrophe Theory. Springer, 1976.

    Google Scholar 

  119. M.S. Mahmoud. Structural properties of discrete systems with slow and fast modes. Large Scale Systems, 3(4):227–236, 1982.

    MATH  MathSciNet  Google Scholar 

  120. R. Marino. High-gain feedback in non-linear control systems. Int. J. Control, 42(6):1369–1385, 1985.

    Article  MATH  Google Scholar 

  121. D.D. Moerder and A.J. Calise. Two-time scale stabilization of systems with output feedback. J. Guid. Contr. Dyn., 8:731–736, 1985.

    Article  MATH  Google Scholar 

  122. M.S. Mahmoud, Y. Chen, and M.G. Singh. Discrete two-time-scale systems. Int. J. Syst. Sci., 17(8):1187–1207, 1986.

    Article  MATH  Google Scholar 

  123. R. Marino and P.V. Kokotovic. A geometric approach to nonlinear singularly perturbed control systems. Automatica, 24(1):31–41, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  124. E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov. Asymptotic Methods in Singularly Perturbed Systems. Plenum Press, 1994.

    Google Scholar 

  125. E.F. Mishchenko and N.Kh. Rozov. Differential Equations with Small Parameters and Relaxation Oscillations (translated from Russian). Plenum Press, 1980.

    Google Scholar 

  126. R. Silva Madriz and S.S. Sastry. Input–output description of linear systems with multiple time-scales. Int. J. Contr., 40(4):699–721, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  127. J. Murdock. Normal Forms and Unfoldings for Local Dynamical Systems. Springer, 2002.

    Google Scholar 

  128. D.S. Naidu. Singular perturbations and time scales in control theory and applications: an overview. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 9:233–278, 2002.

    Google Scholar 

  129. A.H. Nayfeh. The Method of Normal Forms. Wiley, 2011.

    Google Scholar 

  130. D.S. Naidu and D.B. Price. Time-scale synthesis of a closed-loop discrete optimal control system. J. Guid. Contr. Dyn., 10(5):417–421, 1987.

    Article  MATH  Google Scholar 

  131. D.S. Naidu and D.B. Price. Singular perturbation and time scale approaches in discrete control systems. J. Guid. Contr. Dyn., 11(6):592–594, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  132. D.S. Naidu and A.K. Rao. Singular Perturbation Analysis of Discrete Control Systems. Springer, 1985.

    Google Scholar 

  133. R.E. O’Malley and C.F. Kung. The singularly perturbed linear state regulator problem. II. SIAM J. Contr., 13(2):327–337, 1975.

    Google Scholar 

  134. H. Oka. Constrained systems, characteristic surfaces, and normal forms. Japan J. Appl. Math., 4(3):393–431, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  135. R.E. O’Malley. Singular perturbation of the time-invariant linear state regulator problem. J. Differential Equat., 12:117–128, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  136. R.E. O’Malley. The singularly perturbed linear state regulator problem. SIAM J. Contr., 10(3): 399–413, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  137. R.E. O’Malley. Boundary layer methods for certain nonlinear singularly perturbed optimal control problems. J. Math. Anal. Appl., 45(2):468–484, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  138. R.E. O’Malley. On two methods of solution for a singularly perturbed linear state regulator problem. SIAM Rev., 17(1):16–37, 1975.

    Article  MathSciNet  Google Scholar 

  139. R.E. O’Malley. A more direct solution of the nearly singular linear regulator problem. SIAM J. Contr. Optim., 14(6):1063–1077, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  140. R.E. O’Malley. Singular perturbations and optimal control. In W.A. Coppel, editor, Mathematical Control Theory, volume 680 of Lect. Notes Math., pages 170–218. Springer, 1978.

    Google Scholar 

  141. J. O’Reilly. Full-order observers for a class of singularly perturbed linear time-varying systems. Int. J. Contr., 30(5):745–756, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  142. J. O’Reilly. Two time-scale feedback stabilization of linear time-varying singularly perturbed systems. J. Frank. Inst., 308(5):465–474, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  143. J. O’Reilly. Dynamical feedback control for a class of singularly perturbed linear systems using a full-order observer. Int. J. Contr., 31(1):1–10, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  144. H.K. Ozcetin, A. Saberi, and P. Sannuti. Design for H almost disturbance decoupling problem with internal stability via state or measurement feedback-singular perturbation approach. Int. J. Contr., 55(4):901–944, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  145. R.G. Phillips. Reduced order modelling and control of two-time-scale discrete systems. Int. J. Contr., 31(4):765–780, 1980.

    Article  MATH  Google Scholar 

  146. R.G. Phillips. The equivalence of time-scale decomposition techniques used in the analysis and design of linear systems. Int. J. Contr., 37(6):1239–1257, 1983.

    Article  MATH  Google Scholar 

  147. R. Phillips and P. Kokotovic. A singular perturbation approach to modeling and control of Markov chains. IEEE Trans. Aut, Contr., 26(5):1087–1094, 1981.

    Google Scholar 

  148. B. Porter. Singular perturbation methods in the design of observers and stabilising feedback controllers for multivariable linear systems. Electronics Lett., 10(23):494–495, 1974.

    Article  Google Scholar 

  149. B. Porter. Singular perturbation methods in the design of stabilizing feedback controllers for multivariable linear systems. Int. J. Contr., 20(4):689–692, 1974.

    Article  MATH  Google Scholar 

  150. B. Porter. Design of stabilizing feedback controllers for a class of multivariable linear systems with slow and fast modes. Int. J. Contr., 23(1):49–54, 1976.

    Article  MATH  Google Scholar 

  151. B. Porter. Singular perturbation methods in the design of full-order observers for multivariable linear systems. Int. J. Contr., 26(4):589–594, 1977.

    Article  MATH  Google Scholar 

  152. T. Poston. Catastrophe Theory and Its Applications. Dover, 1978.

    Google Scholar 

  153. B. Porter and A.T. Shenton. Singular perturbation analysis of the transfer function matrices of a class of multivariable linear systems. Int. J. Contr., 21(4):655–660, 1975.

    Article  MATH  Google Scholar 

  154. B. Porter and A.T. Shenton. Singular perturbation methods of asymptotic eigenvalue assignment in multivariable linear systems. Int. J. Syst. Sci., 6(1):33–37, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  155. M.T. Qureshi and Z. Gajic. A new version of the Chang transformation. IEEE Trans. Aut. Contr., 37(6):800–801, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  156. B. Riedle and P. Kokotovic. Integral manifolds of slow adaptation. IEEE Trans. Aut. Contr., 31(4): 316–324, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  157. A.V. Rao and K.D. Mease. Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Optim. Control Appl. Meth., 21:1–19, 2000.

    Article  MATH  Google Scholar 

  158. A.J. Roberts. Normal form transforms separate slow and fast modes in stochastic dynamical systems. Physica A, 387:12–38, 2008.

    Article  MathSciNet  Google Scholar 

  159. A. Saberi. Output-feedback control with almost-disturbance-decoupling property - a singular perturbation approach. Int. J. Contr., 45(5):1705–1722, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  160. P. Sannuti. Asymptotic series solution of singularly perturbed optimal control problems. Automatica, 10(2):183–194, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  161. P. Sannuti. Asymptotic expansions of singularly perturbed quasi-linear optimal systems. SIAM J. Contr., 13(3):572–592, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  162. P. Sannuti. On the controllability of singularly perturbed systems. IEEE Trans. Aut. Contr., 22(4):622–624, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  163. P. Sannuti. On the controllability of some singularly perturbed nonlinear systems. J. Math. Anal. Appl., 64(3):579–591, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  164. P. Sannuti. Direct singular perturbation analysis of high-gain and cheap control problems. Automatica, 19(1):41–51, 1983.

    Article  MATH  Google Scholar 

  165. P.T. Saunders. An Introduction to Catastrophe Theory. CUP, 1980.

    Google Scholar 

  166. S. Sen and K.B. Datta. Stability bounds of singularity perturbed systems. IEEE Trans. Aut. Contr., 38(2):302–304, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  167. P. Shi and V. Dragan. Asymptotic H control of singularly perturbed systems with parametric uncertainties. IEEE Trans. Aut. Contr., 44(9):1738–1742, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  168. O.S. Serea. Characterization of the optimal trajectories for the averaged dynamics associated to singularly perturbed control systems. J. Differential Equat., 255:4226–4243, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  169. W.C. Su, Z. Gajic, and X.M. Shen. The exact slow–fast decomposition of the algebraic Riccati equation of singularly perturbed systems. IEEE Trans. Aut. Contr., 37(9):1456–1459, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  170. Z.H. Shao. Robust stability of two-time-scale systems with nonlinear uncertainties. IEEE Trans. Aut. Contr., 49(2):258–261, 2004.

    Article  Google Scholar 

  171. J. Shinar. On applications of singular perturbation techniques in nonlinear optimal control. Automatica, 19(2):203–211, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  172. S. Sastry, J. Hauser, and P. Kokotovic. Zero dynamics of regularly perturbed systems may be singularly perturbed. Syst. Contr. Lett., 13(4):299–314, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  173. R.N.P. Singh. The linear-quadratic-Gaussian problem for singularly perturbed systems. Int. J. Syst. Sci., 13:92–100, 1982.

    Article  Google Scholar 

  174. P. Sannuti and P. Kokotovic. Near-optimum design of linear systems by a singular perturbation method. IEEE Trans. Aut. Contr., 14(1):15–22, 1969.

    Article  Google Scholar 

  175. P. Sannuti and P. Kokotovic. Singular perturbation method for near optimum design of high-order non-linear systems. Automatica, 5(6):773–779, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  176. A. Saberi and H. Khalil. Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE Trans. Aut. Contr., 29(6):542–550, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  177. A. Saberi and H. Khalil. Stabilization and regulation of nonlinear singularly perturbed systems - composite control. IEEE Trans. Aut. Contr., 30(8):739–747, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  178. P.M. Sharkey and J. O’Reilly. Exact design manifold control of a class of nonlinear singularly perturbed systems. IEEE Trans. Aut. Contr., 32(10):933–935, 1987.

    Article  MATH  Google Scholar 

  179. P.M. Sharkey and J. O’Reilly. Composite control of non-linear singularly perturbed systems: a geometric approach. Int. J. Contr., 48(6):2491–2506, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  180. V.R. Saksena, J. O’Reilly, and P.V. Kokotovic. Singular perturbations and time-scale methods in control theory: survey 1976–1983. Automatica, 20(3):273–293, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  181. H.M. Soner. Singular perturbations in manufacturing. SIAM J. Contr. Optim., 31:132–146, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  182. E.D. Sontag. Mathematical Control Theory. Springer, 2nd edition, 1998.

    Google Scholar 

  183. E.D. Sontag. Some new directions in control theory inspired by systems biology. Syst. Biol., 1(1):9–18, 2004.

    Article  Google Scholar 

  184. B. Siciliano, J.V.R. Prasad, and A.J. Calise. Output feedback two-time scale control of multilink flexible arms. J. Dyn. Syst. Measurem. Contr., 114:70–77, 1992.

    Article  MATH  Google Scholar 

  185. H. Sira-Ramirez. Sliding regimes on slow manifolds of systems with fast actuators. Internat. J. Systems Sci., 19(6):875–887, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  186. G.P. Syrcos and P. Sannuti. Singular perturbation modelling of continuous and discrete physical systems. Int. J. Contr., 37(5):1007–1022, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  187. A. Saberi and P. Sannuti. Cheap and singular controls for linear quadratic regulators. IEEE Trans. Aut. Contr., 32(3):208–219, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  188. M. Suzuki. Composite controls for singularly perturbed systems. IEEE Trans. Aut. Contr., 26(2): 505–507, 1981.

    Article  MATH  Google Scholar 

  189. P. Sannuti and H. Wason. A singular perturbation canonical form of invertible systems: determination of multivariate root-loci. Int. J. Contr., 37(6):1259–1286, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  190. P. Sannuti and H. Wason. Multiple time-scale decomposition in cheap control problems - singular control. IEEE Trans. Aut. Contr., 30(7):633–644, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  191. P. Szmolyan and M. Wechselberger. Relaxation oscillations in \(\mathbb{R}^{3}\). J. Differential Equat., 200:69–104, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  192. A.R. Teel, L. Moreau, and D. Nesic. A unified framework for input-to-state stability in systems with two time scales. IEEE Trans. Aut. Contr., 48(9):1526–1544, 2003.

    Article  MathSciNet  Google Scholar 

  193. D. Teneketzis and N. Sandell. Linear regulator design for stochastic systems by a multiple time-scales method. IEEE Trans. Aut. Contr., 22(4):615–621, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  194. C.J. Tomlin and S.S. Sastry. Bounded tracking for non-minimum phase nonlinear systems with fast zero dynamics. Int. J. Contr., 68(4):819–848, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  195. N.P. Vora, M.-N. Contou-Carrere, and P. Daoutidis. Model reduction of multiple time scale processes in non-standard singularly perturbed form. In Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, pages 99–113. Springer, 2006.

    Google Scholar 

  196. A.B. Vasilieva and M.G. Dmitriev. Singular perturbations in optimal control problems. J. Math. Sci., 34(3):1579–1629, 1986.

    Article  Google Scholar 

  197. M. Vidyasagar. Robust stabilization of singularly perturbed systems. Syst. Contr. Lett., 5(6):413–418, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  198. A. Vigodner. Limits of singularly perturbed control problems with statistical dynamics of fast motions. SIAM J. Contr. Optim., 35(1):1–28, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  199. N.V. Voropaeva. Decomposition of problems of optimal control and estimation for discrete systems with fast and slow variables. Automat. Remote Contr., 69(6):920–928, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  200. N.V. Voropaeva and V.A. Sobolev. Decomposition of a linear-quadratic optimal control problem with fast and slow variables. Automat. Remote Contr., 67(8):1185–1193, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  201. M. van Veldhuizen. D-stability. SIAM J. Numer. Anal., 20:45–64, 1981.

    Article  Google Scholar 

  202. M. Wechselberger. Singularly perturbed folds and canards in \(\mathbb{R}^{3}\). PhD thesis, Vienna University of Technology, Vienna, Austria, 1998.

    Google Scholar 

  203. R. Wilde and P. Kokotovic. Optimal open-and closed-loop control of singularly perturbed linear systems. IEEE Trans. Aut. Contr., 18(6):616–626, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  204. A.E.R. Woodcock and T. Poston. A Geometrical Study of the Elementary Catastrophes, volume 373 of Lecture Notes in Mathematics. Springer, 1974.

    Google Scholar 

  205. R. Yackel and P. Kokotovic. A boundary layer method for the matrix Riccati equation. IEEE Trans. Aut. Contr., 18:17–24, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  206. K.-K. Young, P. Kokotovic, and V. Utkin. A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Aut. Contr., 22(6):931–938, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  207. E.C. Zeeman. Catastrophe Theory: Selected Papers, 1972–1977. Addison-Wesley, 1977.

    Google Scholar 

  208. S. Zhu and P. Yu. Computation of the normal forms for general M-DOF systems using multiple time scales. I. Autonomous systems. Commun. Nonlinear Sci. Numer. Simul., 10:869–905, 2005.

    Google Scholar 

  209. S. Zhu and P. Yu. Computation of the normal forms for general M-DOF systems using multiple time scales. II. Non-autonomous systems. Commun. Nonlinear Sci. Numer. Simul., 11:45–81, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Normal Forms. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_4

Download citation

Publish with us

Policies and ethics