Skip to main content

Stochastic Systems

  • Chapter
  • First Online:
Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

  • 6059 Accesses

Abstract

The interaction between noise and multiscale dynamics is already a large area, and it is still a field of intensive research. This chapter aims to provide a number of diverse and interlinked techniques that reflect some recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. D.C. Antonopoulou, D. Blömker, and G.D. Karali. Front motion in the one-dimensional stochastic Cahn–Hilliard equation. SIAM J. Math. Anal., 44(5):3242–3280, 2012.

    MATH  MathSciNet  Google Scholar 

  2. R.V. Abramov. Approximate linear response for slow variables of dynamics with explicit time scale separation. J. Comp. Phys., 229(20):7739–7746, 2010.

    MATH  MathSciNet  Google Scholar 

  3. M. Abbad and J.A. Filar. Perturbation and stability theory for Markov control problems. IEEE Trans. Aut. Contr., 37(9): 1415–1420, 1992.

    MATH  MathSciNet  Google Scholar 

  4. M. Abbad and J.A. Filar. Algorithms for singularly perturbed Markov control problems: a survey. Contr. Dynamic Syst., 73:257–287, 1995.

    Google Scholar 

  5. R.A. Adams and J.J.F. Fournier. Sobolev Spaces. Elsevier, 2003.

    Google Scholar 

  6. M. Abbad, J.A. Filar, and T.R. Bielecki. Algorithms for singularly perturbed limiting average Markov control problems. Decision and Control: Proc. 29th IEEE Conf., pages 1402–1497, 1990.

    Google Scholar 

  7. K.E. Avrachenkov, J.A. Filar, and P.G. Howett. Analytic Perturbation Theory and Its Applications. SIAM, 2013.

    Google Scholar 

  8. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

    Google Scholar 

  9. R.V. Abramov and M.P. Kjerland. The response of reduced models of multiscale dynamics to small external perturbations. arXiv:1305.0862, pages 1–20, 2013.

    Google Scholar 

  10. L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley, 1974.

    Google Scholar 

  11. L. Arnold. Random dynamical systems. In Dynamical Systems (Montecatini Terme, 1994), pages 1–43. Springer, 1995.

    Google Scholar 

  12. L. Arnold. Recent progress in stochastic bifurcation theory. In IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics, pages 15–27. Springer, 2001.

    Google Scholar 

  13. L. Arnold. Random Dynamical Systems. Springer, Berlin Heidelberg, Germany, 2003.

    Google Scholar 

  14. S. Arrhenius. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschr. Phys. Chem., 4:226–248, 1889.

    Google Scholar 

  15. Z. Artstein. Singularly perturbed ordinary differential equations with nonautonomous fast dynamics. J. Dyn. Diff. Eq., 11(2):297–318, 1999.

    MATH  MathSciNet  Google Scholar 

  16. V.I. Bakhtin. Averaging along a Markov chain. Funct. Anal. Appl., 30(1):42–44, 1996.

    MATH  MathSciNet  Google Scholar 

  17. V.I. Bakhtin. Cramér asymptotics in a system with slow and fast Markovian motions. Theor. Prob. Appl., 44(1):1–17, 2000.

    MathSciNet  Google Scholar 

  18. V.I. Bakhtin. Cramér’s asymptotics in systems with fast and slow motions. Stochastics Stoch. Rep., 75(5):319–341, 2003.

    MATH  MathSciNet  Google Scholar 

  19. C. Berzuini and D. Clayton. Bayesian analysis of survival on multiple time scales. Statistics in Medicine, 13(8):823–838, 1994.

    Google Scholar 

  20. A. Bovier, F. den Hollander, and F.R. Nardi. Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary. Prob. Theory Rel. Fields, 135(2):265–310, 2006.

    MATH  Google Scholar 

  21. A. Bovier, F. den Hollander, and C. Spitoni. Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Prob., 38(2):661–713, 2010.

    MATH  Google Scholar 

  22. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Euro. Math. Soc., 6(4):399–424, 2004.

    Google Scholar 

  23. R. Bellman. Introduction to Matrix Analysis. McGraw-Hill, 1960.

    Google Scholar 

  24. N. Berglund. Kramers’ law: validity, derivations and generalisations. Markov Processes Relat. Fields, pages 1–24, 2013. to appear.

    Google Scholar 

  25. T.R. Bielecki and J.A. Filar. Singularly perturbed Markov control problem: limiting average cost. Annals of Operations Research, 28(1):152–168, 1991.

    MathSciNet  Google Scholar 

  26. D. Brown, J. Feng, and S. Feerick. Variability of firing of Hodgkin–Huxley and FitzHugh–Nagumo neurons with stochastic synaptic input. Phys. Rev. Lett., 82(23):4731–4734, 1999.

    Google Scholar 

  27. N. Berglund and B. Gentz. As sample-paths approach to noise-induced synchronization: stochastic resonance in a double-well potential. Ann. Appl. Prob., 12(4):1419–1470, 2002.

    MATH  MathSciNet  Google Scholar 

  28. N. Berglund and B. Gentz. Beyond the Fokker–Planck equation: pathwise control of noisy bistable systems. J. Phys. A: Math. Gen., 35:2057–2091, 2002.

    MATH  MathSciNet  Google Scholar 

  29. N. Berglund and B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity, 15: 605–632, 2002.

    MATH  MathSciNet  Google Scholar 

  30. N. Berglund and B. Gentz. Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations. Stoch. Dyn., 2:327–356, 2002.

    MATH  MathSciNet  Google Scholar 

  31. N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Related Fields, 3:341–388, 2002.

    MathSciNet  Google Scholar 

  32. N. Berglund and B. Gentz. Geometric singular perturbation theory for stochastic differential equations. J. Diff. Eqs., 191:1–54, 2003.

    MATH  MathSciNet  Google Scholar 

  33. N. Berglund and B. Gentz. On the noise-induced passage through an unstable periodic orbit I: Two-level model. J. Statist. Phys., 114(5):1577–1618, 2004.

    MATH  MathSciNet  Google Scholar 

  34. N. Berglund and B. Gentz. Noise-Induced Phenomena in Slow–Fast Dynamical Systems. Springer, 2006.

    Google Scholar 

  35. V.S. Borkar and V. Gaitsgory. Averaging of singularly perturbed controlled stochastic differential equations. Appl. Math. Optim., 56(2):169–209, 2007.

    MATH  MathSciNet  Google Scholar 

  36. N. Berglund and B. Gentz. Stochastic dynamic bifurcations and excitability. In C. Laing and G. Lord, editors, Stochastic methods in Neuroscience, volume 2, pages 65–93. OUP, 2009.

    Google Scholar 

  37. N. Berglund and B. Gentz. On the noise-induced passage through an unstable periodic orbit II: The general case. SIAM J. Math. Anal., 2013. accepted, to appear.

    Google Scholar 

  38. N. Berglund and B. Gentz. Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond. Electronic J. Probability, 18(24):1–58, 2013.

    MathSciNet  Google Scholar 

  39. A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes. II. Precise estimates for small eigenvalues. J. Euro. Math. Soc., 7:69–99, 2005.

    Google Scholar 

  40. N. Berglund, B. Gentz, and C. Kuehn. Hunting French ducks in a noisy environment. J. Differential Equat., 252(9):4786–4841, 2012.

    MATH  MathSciNet  Google Scholar 

  41. N. Berglund, B. Gentz, and C. Kuehn. From random Poincaré maps to stochastic mixed-mode-oscillation patterns. arXiv:1312. 6353, pages 1–55, 2013.

    Google Scholar 

  42. D. Blömker, B. Gawron, and T. Wanner. Nucleation in the one-dimensional stochastic Cahn–Hilliard model. Discr. Cont. Dyn. Syst. A, 27:25–52, 2010.

    MATH  Google Scholar 

  43. D. Blömker and M. Hairer. Multiscale expansion of invariant measures for SPDEs. Comm. Math. Phys., 251(3):515–555, 2004.

    MATH  MathSciNet  Google Scholar 

  44. R. Bartussek, P. Hänggi, and P. Jung. Stochastic resonance in optical bistable systems. Phys. Rev. E, 49(5):3930, 1994.

    Google Scholar 

  45. D. Blömker, M. Hairer, and G.A. Pavliotis. Modulation equation for SPDEs on large domains. Comm. Math. Phys., 258:479–512, 2005.

    MATH  MathSciNet  Google Scholar 

  46. D. Blömker, M. Hairer, and G.A. Pavliotis. Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities. Nonlinearity, 20(7):1721–1744, 2007.

    MATH  MathSciNet  Google Scholar 

  47. E. Ben-Jacob, D.J. Bergman, B.J. Matkowsky, and Z. Schuss. Lifetime of oscillatory steady states. Phys. Rev. A, 26(5):2805, 1982.

    Google Scholar 

  48. V.I. Bakhtin and Yu. Kifer. Diffusion approximation for slow motion in fully coupled averaging. Probab. Theory Relat. Fields, 129:157–181, 2004.

    MATH  MathSciNet  Google Scholar 

  49. P. Borowski, R. Kuske, X.-X. Li, and J.L. Cabrera. Characterizing mixed mode oscillations shaped by noise and bifurcation structure. Chaos, 20:043117, 2010.

    MathSciNet  Google Scholar 

  50. L.L. Bonilla, A. Klar, and S. Martin. Higher order averaging of linear Fokker–Planck equations with periodic forcing. SIAM J. Appl. Math., 72(4):1315–1342, 2012.

    MATH  MathSciNet  Google Scholar 

  51. K. Ball, T.G. Kurtz, L. Popovic, and G. Rempala. Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Prob., 16(4):1925–1961, 2006.

    MATH  MathSciNet  Google Scholar 

  52. P. Bokes, J.R. King, A.T.A. Wood, and M. Loose. Multiscale stochastic modelling of gene expression. J. Math. Biol., 65:493–520, 2012.

    MATH  MathSciNet  Google Scholar 

  53. N. Berglund and D. Landon. Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model. Nonlinearity, 25:2303–2335, 2012.

    MATH  MathSciNet  Google Scholar 

  54. D. Blömker. Amplitude equations for locally cubic nonautonomous nonlinearities. SIAM J. Appl. Dyn. Syst., 2(3):464–486, 2003.

    MATH  MathSciNet  Google Scholar 

  55. D. Blömker. Amplitude Equations for Stochastic Partial Differential Equations. World Scientific, 2007.

    Google Scholar 

  56. C. Le Bris, T. Lelièvre, and M. Perez. A mathematical formalization of the parallel replica dynamics. Monte Carlo Meth. Appl., 18(2):119–146, 2012.

    MATH  Google Scholar 

  57. D. Blömker and W.W. Mohammed. Amplitude equation for SPDEs with quadratic nonlinearities. Electron. J. Prob., 14(88):2527–2550, 2009.

    MATH  Google Scholar 

  58. A.J. Black and A.J. McKane. WKB calculation of an epidemic outbreak distribution. J. Stat. Mech., 2011:P12006, 2011.

    Google Scholar 

  59. P.C. Bressloff and J.M. Newby. Metastability in a stochastic neural network modeled as a velocity jump Markov process. SIAM J. Appl. Dyn Syst., 12:1394–1435, 2013.

    MATH  MathSciNet  Google Scholar 

  60. C.M. Bender and S.A. Orszag. Asymptotic Methods and Perturbation Theory. Springer, 1999.

    Google Scholar 

  61. R.V. Bobryk. Closure method and asymptotic expansions for linear stochastic systems. J. Math. Anal. Appl., 329(1):703–711, 2007.

    MATH  MathSciNet  Google Scholar 

  62. V.S. Borkar. Stochastic approximation with two time scales. Syst. Contr. Lett., 29(5):291–294, 1997.

    MATH  MathSciNet  Google Scholar 

  63. L. Bocquet and J. Piasecki and J.-P. Hansen. On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction coefficient. J. Statist. Phys., 76:505–526, 1994.

    Google Scholar 

  64. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climatic change. Tellus, 34(11):10–16, 1982.

    Google Scholar 

  65. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic resonance in climatic change. SIAM J. Appl. Math., 43(3):565–578, 1983.

    MathSciNet  Google Scholar 

  66. C.-E. Bréhier. Strong and weak orders in averaging for SPDEs. Stoch. Proc. Appl., 122(7):2553–2593, 2012.

    MATH  Google Scholar 

  67. R. Brown. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4:161–173, 1828.

    Google Scholar 

  68. G. Blankenship and S. Sachs. Singularly perturbed linear stochastic ordinary differential equations. SIAM J. Math. Anal., 1979:306–320, 1979.

    MathSciNet  Google Scholar 

  69. B.Z. Bobrovsky and Z. Schuss. A singular perturbation method for the computation of the mean first passage time in a nonlinear filter. SIAM J. Appl. Math., 42(1):174–187, 1982.

    MATH  MathSciNet  Google Scholar 

  70. R. Benzi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance. J. Phys. A, 14(11): 453–457, 1981.

    MathSciNet  Google Scholar 

  71. G. Badowski and G.G. Yin. Stability of hybrid dynamic systems containing singularly perturbed random processes. IEEE Trans. Aut. Contr., 47(12):2021–2032, 2002.

    MathSciNet  Google Scholar 

  72. N. Chernov and D. Dolgopyat. Brownian Brownian motion, volume 927 of Mem. Amer. Math. Soc. AMS, 2009.

    Google Scholar 

  73. J.C. Celet, D. Dangoisse, P. Glorieux, G. Lythe, and T. Erneux. Slowly passing through resonance strongly depends on noise. Phys. Rev. Lett., 81(5):975–978, 1998.

    Google Scholar 

  74. S. Cerrai. A Khasminskii type averaging principle for stochastic reaction–diffusion equations. Ann. Appl. Prob., 19(3):899–948, 2009.

    MATH  MathSciNet  Google Scholar 

  75. S. Cerrai. Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal., 43(6):2482–2518, 2011.

    MATH  MathSciNet  Google Scholar 

  76. H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory Relat. Fields, 100(3):365–393, 1994.

    MATH  MathSciNet  Google Scholar 

  77. S. Cerrai and M. Freidlin. On the Smoluchowski–Kramers approximation for a system with an infinite number of degrees of freedom. Probab. Theory Rel. Fields, 135(3):363–394, 2006.

    MATH  MathSciNet  Google Scholar 

  78. S. Cerrai and M. Freidlin. Smoluchowski–Kramers approximation for a general class of SPDEs. J. Evol. Equat., 6(4):657–689, 2006.

    MATH  MathSciNet  Google Scholar 

  79. S. Cerrai and M. Freidlin. Averaging principle for a class of stochastic reaction–diffusion equations. Probab. Theory Rel. Fields, 144(1):137–177, 2009.

    MATH  MathSciNet  Google Scholar 

  80. P. Chleboun, A. Faggionato, and F. Martinelli. Time scale separation and dynamic heterogeneity in the low temperature east model. arXiv:1212.2399v1, pages 1–40, 2012.

    Google Scholar 

  81. P. Channell, I. Fuwape, A.B. Neiman, and A. Shilnikov. Variability of bursting patterns in a neuron model in the presence of noise. J. Comp. Neurosci., 27(3):527–542, 2009.

    MathSciNet  Google Scholar 

  82. M. Cassandro, A. Galves, E. Olivieri, and M.E. Vares. Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys., 35(5):603–634, 1984.

    MATH  MathSciNet  Google Scholar 

  83. N.N. Chentsova. An investigation of a certain model system of quasi-stochastic relaxation oscillations. Russ. Math. Surv., 37(5):164, 1982.

    Google Scholar 

  84. T.R. Chay and H.S. Kang. Role of single-channel stochastic noise on bursting clusters of pancreatic beta-cells. Biophys. J., 54(3):427–435, 1988.

    Google Scholar 

  85. C. Chipot and T. Lelièvre. Enhanced sampling of multidimensional free-energy landscapes using adaptive biasing forces. SIAM J. Appl. Math., 71(5):1673–1695, 2011.

    MATH  MathSciNet  Google Scholar 

  86. G.W.A. Constable, A.J. McKane, and T. Rogers. Stochastic dynamics on slow manifolds. J. Phys. A, 46:295002, 2013.

    MathSciNet  Google Scholar 

  87. S. Cerrai and M. Röckner. Large deviations for invariant measures of general stochastic reaction–diffusion systems. Comptes Rendus Acad. Sci. Paris S. I Math., 337:597–602, 2003.

    MATH  Google Scholar 

  88. S. Cerrai and M. Röckner. Large deviations for stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term. Annals of Probability, 32:1–40, 2004.

    MathSciNet  Google Scholar 

  89. S. Cerrai and M. Röckner. Large deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term. Annales de l’Institut Henri Poincaré (B), 41:69–105, 2005.

    Google Scholar 

  90. R. Curtu, A. Shpiro, N. Rubin, and J. Rinzel. Mechanisms for frequency control in neuronal competition models. SIAM J. Appl. Dyn. Syst., 7(2):609–649, 2008.

    MATH  MathSciNet  Google Scholar 

  91. M. Coderch, A.S. Willsky, and S.S. Sastry. Hierarchical aggregation of singularly perturbed finite state Markov processes. Stochastics, 8(4):259–289, 1983.

    MATH  MathSciNet  Google Scholar 

  92. A.F: Cheviakov, M.J. Ward, and R. Straube. An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere. Multiscale Model. Simul., 8(3):836–870, 2010.

    Google Scholar 

  93. M.V. Day. On the exponential exit law in the small parameter exit problem. Stochastics, 8(4):297–323, 1983.

    MATH  MathSciNet  Google Scholar 

  94. M.V. Day. On the asymptotic relation between equilibrium density and exit measure in the exit problem. Stochastics, 12(3):303–330, 1984.

    MATH  MathSciNet  Google Scholar 

  95. M.V. Day. Recent progress on the small parameter exit problem. Stochastics, 20(2):121–150, 1987.

    MATH  MathSciNet  Google Scholar 

  96. M.V. Day. Boundary local time and small parameter exit problems with characteristic boundaries. SIAM J. Math. Anal., 20(1):222–248, 1989.

    MATH  MathSciNet  Google Scholar 

  97. M.V. Day. Large deviations results for the exit problem with characteristic boundary. J. Math. Anal. Appl., 147(1):134–153, 1990.

    MATH  MathSciNet  Google Scholar 

  98. M.V. Day. Conditional exits for small noise diffusions with characteristic boundary. Ann. Prob., 20(3):1385–1419, 1992.

    MATH  Google Scholar 

  99. M.V. Day. Cycling and skewing of exit measures for planar systems. Stochastics, 48(3):227–247, 1994.

    MATH  MathSciNet  Google Scholar 

  100. M.V. Day. On the exit law from saddle points. Stoch. Proc. Appl., 60(2):287–311, 1995.

    MATH  Google Scholar 

  101. C. Van den Broeck and P. Mandel. Delayed bifurcations in the presence of noise. Phys. Lett. A, 122: 36–38, 1987.

    Google Scholar 

  102. A. Du and J. Duan. Invariant manifold reduction for stochastic dynamical systems. Dyn. Syst. Appl., 16:681–696, 2007.

    MATH  MathSciNet  Google Scholar 

  103. A. Devinatz, R. Ellis, and A. Friedman. The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II. Ind. Univ. Math. J., 23(11):991–1011, 1974.

    Google Scholar 

  104. F. Delebecque. A reduction process for perturbed Markov chains. SIAM J. Appl. Math., 43(2):325–350, 1983.

    MATH  MathSciNet  Google Scholar 

  105. D. Dawson and A. Greven. Hierarchical models of interacting diffusions: multiple time scale phenomena, phase transition and pattern of cluster-formation. Probab. Theory Related Fields, 96(4):435–473, 1993.

    MATH  MathSciNet  Google Scholar 

  106. D. Dawson and A. Greven. Multiple time scale analysis of interacting diffusions. Probab. Theory Related Fields, 95(4):467–508, 1993.

    MATH  MathSciNet  Google Scholar 

  107. F. den Hollander. Metastability under stochastic dynamics. Stoch. Proc. Appl., 114:1–26, 2004.

    MATH  Google Scholar 

  108. F. den Hollander. Large Deviations. Amer. Math. Soc., 2008.

    Google Scholar 

  109. J. Duan, K. Lu, and B. Schmalfuss. Invariant manifolds for stochastic partial differential equations. Ann. Prob., 31(4):2109–2135, 2003.

    MATH  MathSciNet  Google Scholar 

  110. J. Duan, K. Lu, and B. Schmalfuss. Smooth stable and unstable manifolds for stochastic evolutionary equations. J. Dyn. Diff. Eq., 16(4):949–972, 2004.

    MATH  MathSciNet  Google Scholar 

  111. M.M. Dygas, B.J. Matkowsky, and Z. Schuss. A singular perturbation approach to non-Markovian escape rate problems. SIAM J. Appl. Math., 46(2):265–298, 1986.

    MATH  MathSciNet  Google Scholar 

  112. M.M. Dygas, B.J. Matkowsky, and Z. Schuss. A singular perturbation approach to non-Markovian escape rate problems with state dependent friction. J. Chem. Phys., 84:3731, 1986.

    Google Scholar 

  113. J.D. Deuschel and A. Pisztora. Surface order large deviations for high-density percolation. Probab. Theory Rel. Fields, 104(4):467–482, 1996.

    MATH  MathSciNet  Google Scholar 

  114. A. Destexhe and M. Rudolph-Lilith. Neuronal Noise. Springer, 2012.

    Google Scholar 

  115. J.D. Deuschel and D.W. Stroock. Large Deviations. Academic Press, 1989.

    Google Scholar 

  116. P. Dupuis, K. Spiliopoulos, and H. Wang. Importance sampling for multiscale diffusions. Multiscale Model. Simul., 10(1):1–27, 2012.

    MATH  MathSciNet  Google Scholar 

  117. J. Durbin. The first-passage density of a continuous Gaussian process to a general boundary. J. Appl. Prob., 22:99–122, 1985.

    MATH  MathSciNet  Google Scholar 

  118. J. Durbin. The first-passage density of the Brownian motion process to a curved boundary. J. Appl. Prob., 29:291–304, 1992. with an appendix by D. Williams.

    Google Scholar 

  119. R. Durrett. The Essentials of Probability. Duxbury, 1994.

    Google Scholar 

  120. R. Durrett. Probability: Theory and Examples - 4th edition. CUP, 2010.

    Google Scholar 

  121. M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time, I. Comm. Pure Appl. Math., 28(1):1–47, 1975.

    MATH  MathSciNet  Google Scholar 

  122. M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time, II. Comm. Pure Appl. Math., 28(2):279–301, 1975.

    MATH  Google Scholar 

  123. M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time, III. Comm. Pure Appl. Math., 29(4):389–461, 1976.

    MATH  MathSciNet  Google Scholar 

  124. M.D. Donsker and S.R.S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time, IV. Comm. Pure Appl. Math., 36(2):183–212, 1983.

    MATH  MathSciNet  Google Scholar 

  125. M.D. Donsker and S.R.S. Varadhan. Large deviations from a hydrodynamic scaling limit. Comm. Pure Appl. Math., 42(3):243–270, 1989.

    MATH  MathSciNet  Google Scholar 

  126. L. DeVille and E. Vanden-Eijnden. A nontrivial scaling limit for multiscale Markov chains. J. Stat. Phys., 126(1):75–94, 2006.

    MathSciNet  Google Scholar 

  127. L. DeVille, E. Vanden-Eijnden, and C.B. Muratov. Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys. Rev. E, 72(3):031105, 2005.

    Google Scholar 

  128. F.J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Physics, 3(6):1191, 1962.

    Google Scholar 

  129. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, volume 38 of Applications of Mathematics. Springer-Verlag, 1998.

    Google Scholar 

  130. A. Eizenberg and M. Freidlin. On the Dirichlet problem for a class of second order PDE systems with small parameter. Stoch. Stoch. Rep., 33(3):111–148, 1990.

    MATH  MathSciNet  Google Scholar 

  131. A. Eizenberg and M. Freidlin. Large deviations for Markov processes corresponding to PDE systems. Ann. Probab., 21(2): 1015–1044, 1993.

    MATH  MathSciNet  Google Scholar 

  132. A. Einstein. Über die von der molekular-kinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., pages 549–560, 1905.

    Google Scholar 

  133. W. E., W. Ren, and E. Vanden-Eijnden. String method for the study of rare events. Phys. Rev. B, 66(5):052301, 2002.

    Google Scholar 

  134. W. E., W. Ren, and E. Vanden-Eijnden. Finite temperature string method for the study of rare events. J. Phys. Chem. B, 109(14):6688–6693, 2005.

    Google Scholar 

  135. L. Erdös, B. Schlein, and H.T. Yau. Universality of random matrices and local relaxation flow. Invent. Math., 185(1):75–119, 2011.

    MATH  MathSciNet  Google Scholar 

  136. L.C. Evans. Partial Differential Equations. AMS, 2002.

    Google Scholar 

  137. W. E and E. Vanden-Eijnden. Metastability, conformation dynamics, and transition pathways in complex systems. In Multiscale Modelling and Simulation, pages 35–68. Springer, 2004.

    Google Scholar 

  138. W. E and E. Vanden-Eijnden. Towards a theory of transition paths. J. Stat. Phys., 123(3):503–523, 2006.

    Google Scholar 

  139. W. E and E. Vanden-Eijnden. Transition-path theory and path-finding algorithms for the study of rare events. Phys. Chem., 61:391–420, 2010.

    Google Scholar 

  140. H. Eyring. The activated complex in chemical reactions. J. Chem. Phys., 3:107–115, 1935.

    Google Scholar 

  141. H. Fu and J. Duan. An averaging principle for two time-scale stochastic partial differential equations. Stoch. Dyn., 11:353–367, 2011.

    MATH  MathSciNet  Google Scholar 

  142. J.E. Frank and G.A. Gottwald. Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere. Physica D, 254:46–56, 2013.

    MathSciNet  Google Scholar 

  143. W.H. Fleming and M.R. James. Asymptotic series and exit time probabilities. Ann. Probab., 20(3):1369–1384, 1992.

    MATH  MathSciNet  Google Scholar 

  144. H. Fu, X. Liu, and J. Duan. Slow manifolds for multi-time-scale stochastic evolutionary systems. Comm. Math. Sci., 11(1):141–162, 2013.

    MATH  MathSciNet  Google Scholar 

  145. W.H. Fleming. Stochastic control for small noise intensities. SIAM J. Control, 9(3):473–517, 1971.

    MathSciNet  Google Scholar 

  146. W.H. Fleming. Exit probabilities and optimal stochastic control. Appl. Math. Optim., 4(1):329–346, 1977.

    MathSciNet  Google Scholar 

  147. C. Franzke, A.J. Majda, and E. Vanden-Eijnden. Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci., 62:1722–1745, 2005.

    MathSciNet  Google Scholar 

  148. G. Folland. Real Analysis - Modern Techniques and Their Applications. Wiley, 1999.

    Google Scholar 

  149. R.F. Fox. Stochastic versions of the Hodgkin–Huxley equations. Biophys. J., 72:2068–2074, 1997.

    Google Scholar 

  150. M.I. Freidlin. The action functional for a class of stochastic processes. Theory Probab. Appl., 17(3): 511–515, 1973.

    Google Scholar 

  151. M.I. Freidlin. The averaging principle and theorems on large deviations. Russ. Math. Surv., 33(5): 117–176, 1978.

    MathSciNet  Google Scholar 

  152. M.I. Freidlin. Limit theorems for large deviations and reaction–diffusion equations. Ann. Probab., 13(3):639–675, 1985.

    MATH  MathSciNet  Google Scholar 

  153. M.I. Freidlin. Coupled reaction–diffusion equations. Ann. Probab., 19(1):29–57, 1991.

    MATH  MathSciNet  Google Scholar 

  154. M.I. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Springer, 1996.

    Google Scholar 

  155. M.I. Freidlin. Diffusion processes on graphs: stochastic differential equations, large deviation principle. Probab. Theory Rel. Fields, 116(2):181–220, 2000.

    MATH  MathSciNet  Google Scholar 

  156. M.I. Freidlin. Quasi-deterministic approximation, metastability and stochastic resonance. Physica D, 137(3):333–352, 2000.

    MATH  MathSciNet  Google Scholar 

  157. M.I. Freidlin. On stable oscillations and equilibriums induced by small noise. J. Stat. Phys., 103(1):283–300, 2001.

    MATH  MathSciNet  Google Scholar 

  158. M.I. Freidlin. Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys., 117(3): 617–634, 2004.

    MATH  MathSciNet  Google Scholar 

  159. A. Friedman. Stochastic Differential Equations and Applications. Dover, 2006.

    Google Scholar 

  160. M.I. Freidlin and R.B. Sowers. A comparison of homogenization and large deviations, with applications to wavefront propagation. Stoch. Proc. Appl., 82(1):23–52, 1999.

    MATH  MathSciNet  Google Scholar 

  161. M.I. Freidlin and A.D. Wentzell. Reaction-diffusion equations with randomly perturbed boundary conditions. Ann. Probab., 20(2):963–986, 1992.

    MATH  MathSciNet  Google Scholar 

  162. M.I. Freidlin and A.D. Wentzell. Diffusion processes on graphs and the averaging principle. Ann. Probab., 21(4):2215–2245, 1993.

    MATH  MathSciNet  Google Scholar 

  163. M.I. Freidlin and M. Weber. Random perturbations of nonlinear oscillators. Ann. Probab., 26(3): 925–967, 1998.

    MATH  MathSciNet  Google Scholar 

  164. M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems. Springer, 1998.

    Google Scholar 

  165. M.I. Freidlin and M. Weber. A remark on random perturbations of the nonlinear pendulum. Ann. Appl. Probab., 9(3):611–628, 1999.

    MATH  MathSciNet  Google Scholar 

  166. M.I. Freidlin and A.D. Wentzell. Random perturbations of dynamical systems and diffusion processes with conservation laws. Probab. Theory Rel. Fields, 128(3):441–466, 2004.

    MATH  MathSciNet  Google Scholar 

  167. M.I. Freidlin and A.D. Wentzell. Long-time behavior of weakly coupled oscillators. J. Stat. Phys., 123(6):1311–1337, 2006.

    MATH  MathSciNet  Google Scholar 

  168. L. Gammaitoni. Stochastic resonance and the dithering effect in threshold physical systems. Phys. Rev. E, 52(5):4691, 1995.

    Google Scholar 

  169. C. Gardiner. Stochastic Methods. Springer, Berlin Heidelberg, Germany, 4th edition, 2009.

    MATH  Google Scholar 

  170. S. Geman. Some averaging and stability results for random differential equations. SIAM J. Appl. Math., 36(1):86–105, 1979.

    MATH  MathSciNet  Google Scholar 

  171. J. Grasman and O.A. Van Herwaarden. Asymptotic Methods for the Fokker–Planck Equation and the Exit Problem in Applications. Springer, 1999.

    Google Scholar 

  172. I. Goychuk and P. Hänggi. Stochastic resonance in ion channels characterized by information theory. Phys. Rev. E, 61(4):4272, 2000.

    Google Scholar 

  173. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70: 223–287, 1998.

    Google Scholar 

  174. D. Givon and R. Kupferman. White noise limits for discrete dynamical systems driven by fast deterministic dynamics. Physica A, 335(3):385–412, 2004.

    MathSciNet  Google Scholar 

  175. M. Grossglauser, S. Keshav, and D.N. Tse. RCBR: a simple and efficient service for multiple time-scale traffic. IEEE/ACM Trans. Netw., 5(6):741–755, 1997.

    Google Scholar 

  176. A. Guillin and R. Liptser. MDP for integral functionals of fast and slow processes with averaging. Stochastic Process. Appl., 115(7):1187–1207, 2005.

    MATH  MathSciNet  Google Scholar 

  177. G. Gigante, M. Mattia, and P.D. Giudice. Diverse population-bursting modes of adapting spiking neurons. Phys. Rev. Lett., 98(14):148101, 2007.

    Google Scholar 

  178. T. Guhr, A. Müller-Groeling, and H.A. Weidenmüller. Random-matrix theories in quantum physics: common concepts. Phys. Rep., 299(4):189–425, 1998.

    MathSciNet  Google Scholar 

  179. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Santucci. Stochastic resonance in bistable systems. Phys. Rev. Lett., 62(4):349–352, 1989.

    Google Scholar 

  180. L. Gammaitoni, F. Marchesoni, and S. Santucci. Stochastic resonance as a bona fide resonance. Phys. Rev. Lett., 74(7):1052–1055, 1995.

    Google Scholar 

  181. L. Gammaitoni, E. Menichella-Saetta, S. Santucci, F. Marchesoni, and C. Presilla. Periodically time-modulated bistable systems: stochastic resonance. Phys. Rev. A, 40(4):2114, 1989.

    Google Scholar 

  182. A. Galves, E. Olivieri, and M.E. Vares. Metastability for a class of dynamical systems subject to small random perturbations. Ann. Prob., 15(4):1288–1305, 1987.

    MATH  MathSciNet  Google Scholar 

  183. A. Genadot and M. Thieullen. Averaging for a fully coupled piecewise-deterministic Markov process in infinite dimensions. Adv. Appl. Probab., 44(3):749–773, 2012.

    MATH  MathSciNet  Google Scholar 

  184. A. Genadot and M. Thieullen. Multiscale piecewise deterministic Markov process in infnite dimension: central limit theorem and Langevin approximation. arXiv:1211.1894v1, pages 1–33, 2012.

    Google Scholar 

  185. A. Gupta. The Fleming–Viot limit of an interacting spatial population with fast density regulation. Electronic J. Probab., 17(104):1–55, 2012.

    Google Scholar 

  186. P.-L. Gong and J.-X. Xu. Global dynamics and stochastic resonance of the forced FitzHugh–Nagumo neuron model. Phys. Rev. E, 63(3):031906, 2001.

    Google Scholar 

  187. P. Hänggi. Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem, 3(3):285–290, 2002.

    Google Scholar 

  188. M. Hasler, V. Belykh, and I. Belykh. Dynamics of stochastically blinking systems. Part I: Finite time properties. SIAM J. Appl. Dyn. Syst., 12(2):1007–1030, 2013.

    Google Scholar 

  189. M. Hasler, V. Belykh, and I. Belykh. Dynamics of stochastically blinking systems. Part II: Asymptotic properties. SIAM J. Appl. Dyn. Syst., 12(2):1031–1084, 2013.

    Google Scholar 

  190. I. Horenko, E. Dittmer, A. Fischer, and C. Schütte. Automated model reduction for complex systems exhibiting metastability. Multiscale Model. Simul., 5(3):802–827, 2006.

    MATH  MathSciNet  Google Scholar 

  191. R.C. Hilborn and R.J. Erwin. Fokker–Planck analysis of stochastic coherence in models of an excitable neuron with noise in both fast and slow dynamics. Phys. Rev. E, 72:031112, 2005.

    MathSciNet  Google Scholar 

  192. B. Helffer. Semiclassical Analysis, Witten Laplacians and Statistical Mechanics. World Scientific, 2002.

    Google Scholar 

  193. F. Hérau, M. Hitrik, and J. Sjöstrand. Tunnel effect for Kramers–Fokker–Planck type operators. Ann. Henri Poincaré, 9(2):209–275, 2008.

    MATH  Google Scholar 

  194. S. Herrmann and P. Imkeller. Barrier crossings characterize stochastic resonance. Stoch. Dyn., 2(3):413–436, 2002.

    MATH  MathSciNet  Google Scholar 

  195. S. Herrmann and P. Imkeller. The exit problem for diffusions with time-periodic drift and stochastic resonance. Ann. Appl. Probab., 15:39–68, 2005.

    MATH  MathSciNet  Google Scholar 

  196. D.J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43(3):525–546, 2001.

    MATH  MathSciNet  Google Scholar 

  197. S. Herrmann, P. Imkeller, and D. Peithmann. Large deviations and a Kramers type law for self-stabilizing diffusions. Ann. Appl. Probab., 18(4):1379–1423, 2008.

    MATH  MathSciNet  Google Scholar 

  198. P. Hänggi, P. Jung, C. Zerbe, and F. Moss. Can colored noise improve stochastic resonance? J. Stat. Phys., 70(1):25–47, 1993.

    MATH  Google Scholar 

  199. S. Habib and G. Lythe. Dynamics of kinks: nucleation, diffusion, and annihilation. Phys. Rev. Lett., 84(6):1070–1073, 2000.

    Google Scholar 

  200. W. Horsthemke and R. Lefever. Noise-Induced Transitions. Springer, 2006.

    Google Scholar 

  201. P. Hitczenko and G.S. Medvedev. Bursting oscillations induced by small noise. SIAM J. Appl. Math., 69(5):1359–1392, 2009.

    MATH  MathSciNet  Google Scholar 

  202. M. Hairer and A.J. Majda. A simple framework to justify linear response theory. Nonlinearity, 23(4):909–922, 2010.

    MATH  MathSciNet  Google Scholar 

  203. W. Huisinga, S. Meyn, and C. Schütte. Phase transitions and metastability in Markovian and molecular systems. Ann. Prob., 14(1):419–458, 2004.

    MATH  Google Scholar 

  204. B. Helffer and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mat. Contemp., 26:41–85, 2004.

    MATH  MathSciNet  Google Scholar 

  205. B. Helffer and F. Nier. Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, volume 1862 of Lect. Notes Math. Springer, 2005.

    Google Scholar 

  206. F.C. Hoppenstaedt. Singular perturbation solutions of noisy systems. SIAM J. Appl. Math., 55(2): 544–551, 1995.

    MathSciNet  Google Scholar 

  207. B. Helffer and J. Sjostrand. Multiple wells in the semi-classical limit I. Comm. Partial Diff. Equat., 9(4):337–408, 1984.

    MATH  MathSciNet  Google Scholar 

  208. D. Holcman and Z. Schuss. Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys., 117(5):975–1014, 2004.

    MATH  MathSciNet  Google Scholar 

  209. P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys., 62(2):251–341, 1990.

    Google Scholar 

  210. A.M. Il’in, R.Z. Khasminskii, and G. Yin. Asymptotic expansions of solutions of integro-differential equations for transition densities of singularly perturbed switching diffusions: rapid switchings. J. Math. Anal. Appl., 238(2):516–539, 1999.

    Google Scholar 

  211. P. Imkeller and I. Pavlyukevich. Stochastic resonance in two-state Markov chains. Archiv Math., 77:107–115, 2001.

    MATH  MathSciNet  Google Scholar 

  212. P. Imkeller and I. Pavlyukevich. Model reduction and stochastic resonance. Stoch. Dyn., 2(4):463–506, 2002.

    MATH  MathSciNet  Google Scholar 

  213. P. Imkeller and I. Pavlyukevich. First exit times of SDEs driven by stable Lévy processes. Stoch. Process. Appl., 116(4):611–642, 2006.

    MATH  MathSciNet  Google Scholar 

  214. P. Imkeller and I. Pavlyukevich. Lévy flights: transitions and meta-stability. J. Phys. A, 39(15):L237, 2006.

    Google Scholar 

  215. P. Imkeller, I. Pavlyukevich, and T. Wetzel. First exit times for Lévy-driven diffusions with exponentially light jumps. Ann. Probab., 37(2):530–564, 2009.

    MATH  MathSciNet  Google Scholar 

  216. P. Jung and P. Hänggi. Amplification of small signals via stochastic resonance. Phys. Rev. A, 44(12):8032, 1991.

    Google Scholar 

  217. K.M. Jansons and G.D. Lythe. Stochastic calculus: application to dynamic bifurcations and threshold crossings. J. Stat. Phys., 90:227–251, 1998.

    MATH  MathSciNet  Google Scholar 

  218. J. Jacod and P. Protter. Probability Essentials. Springer, 2004.

    Google Scholar 

  219. L. Ji, J. Zhang, X. Lang, and X. Zhang. Coupling and noise induced spiking-bursting transition in a parabolic bursting model. Chaos, 23:013141, 2013.

    Google Scholar 

  220. R. Kuske and S.M. Baer. Asymptotic analysis of noise sensitivity in a neuronal burster. Bull. Math. Biol., 64(3):447–481, 2002.

    Google Scholar 

  221. R. Kuske and R. Borowski. Survival of subthreshold oscillations: the interplay of noise, bifurcation structure, and return mechanism. Discr. and Cont. Dyn. Sys. S, 2(4):873–895, 2009.

    MATH  MathSciNet  Google Scholar 

  222. M.M. Klosek-Dygas, B.J. Matkowsky, and Z. Schuss. Colored noise in dynamical systems. SIAM J. Appl. Math., 48(2):425–441, 1988.

    MATH  MathSciNet  Google Scholar 

  223. M.M. Klosek-Dygas, B.J. Matkowsky, and Z. Schuss. Colored noise in activated rate processes. J. Stat. Phys., 54(5):1309–1320, 1989.

    MATH  MathSciNet  Google Scholar 

  224. R. Kuske, L.F. Gordillo, and P. Greenwood. Sustained oscilla- tions via coherence resonance in SIR. J. Theor. Biol., 245(3): 459–469, 2007.

    MathSciNet  Google Scholar 

  225. A.L. Kawczynski, J. Gorecki, and B. Nowakowski. Microscopic and stochastic simulations of oscillations in a simple model of chemical system. J. Phys. Chem. A, 102(36):7113–7122, 1998.

    Google Scholar 

  226. Yu. Kifer. The exit problem for small random perturbations of dynamical systems with a hyperbolic fixed point. Israel J. Math., 40(1):74–96, 1981.

    MathSciNet  Google Scholar 

  227. Yu. Kifer. A discrete-time version of the Wentzell–Freidlin theory. Ann. Prob., 18(4):1676–1692, 1990.

    MATH  MathSciNet  Google Scholar 

  228. Yu. Kifer. Stochastic versions of Anosov’s and Neistadt’s theorems on averaging. Stoch. Dyn., 1(1): 1–21, 2001.

    MATH  MathSciNet  Google Scholar 

  229. R.Z. Khasminskii and N. Krylov. On averaging principle for diffusion processes with null-recurrent fast component. Stoch. Proc. Appl., 93(2):229–240, 2001.

    MATH  MathSciNet  Google Scholar 

  230. M.M. Klosek and R. Kuske. Multiscale analysis of stochastic delay differential equations. Multiscale Model. Simul., 3(3):706–729, 2005.

    MATH  MathSciNet  Google Scholar 

  231. P. Kramer and A. Majda. Stochastic mode reduction for particle-based simulation methods for complex microfluid systems. SIAM J. Appl. Math., 64(2):401–422, 2003.

    MATH  MathSciNet  Google Scholar 

  232. P. Kramer and A. Majda. Stochastic mode reduction for the immersed boundary method. SIAM J. Appl. Math., 64(2):369–400, 2003.

    MATH  MathSciNet  Google Scholar 

  233. M.A. Katsoulakis, A.J. Majda, and A. Sopasakis. Multiscale couplings in prototype hybrid deterministic/stochastic systems: part I, deterministic closures. Commun. Math. Sci., 2(2): 255–294, 2004.

    MATH  MathSciNet  Google Scholar 

  234. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. An asymptotic theory of large deviations for Markov jump processes. SIAM J. Appl. Math., 45(6):1006–1028, 1985.

    MathSciNet  Google Scholar 

  235. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. Asymptotic analysis of a state-dependent M/G/1 queueing system. SIAM J. Appl. Math., 46(3):483–505, 1986.

    MathSciNet  Google Scholar 

  236. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. On the performance of state-dependent single server queues. SIAM J. Appl. Math., 46(4):657–697, 1986.

    MathSciNet  Google Scholar 

  237. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. A singular perturbation approach to first passage times for Markov jump processes. J. Stat. Phys., 42(1):169–184, 1986.

    Google Scholar 

  238. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. Asymptotic expansions for a closed multiple access system. SIAM J. Comput., 16(2):378–398, 1987.

    MathSciNet  Google Scholar 

  239. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. A Markov-modulated M/G/1 queue I: stationary distribution. Queueing Syst., 1(4):355–374, 1987.

    Google Scholar 

  240. C. Knessel, B.J. Matkowsky, Z. Schuss and C. Tier. The two repairmen problem: a finite source M/G/2 queue. SIAM J. Appl. Math., 47(2):367–397, 1987.

    MathSciNet  Google Scholar 

  241. R.V. Kohn, F. Otto, M.G. Reznikoff, and E. Vanden-Eijnden. Action minimization and sharp-interface limits for the stochastic Allen–Cahn equation. Comm. Pure Appl. Math., 60(3):393–438, 2007.

    MATH  MathSciNet  Google Scholar 

  242. C. Kipnis, S. Olla, and S.R.S. Varadhan. Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure. Appl. Math., 42(2):115–137, 1989.

    MATH  MathSciNet  Google Scholar 

  243. Y.M. Kabanov and S.M. Pergamenshchikov. Singular perturbations of stochastic differential equations. Math. USSR-Sbor., 71:15–27, 1992.

    MATH  MathSciNet  Google Scholar 

  244. Y.M. Kabanov and S.M. Pergamenshchikov. Large deviations for solutions of singularly perturbed stochastic differential equations. Russ. Math. Surv., 50(5):989–1013, 1995.

    MATH  MathSciNet  Google Scholar 

  245. Y. Kabanov and S. Pergamenshchikov. Two-Scale Stochastic Systems. Springer, 2003.

    Google Scholar 

  246. S. Krumscheid, G.A. Pavliotis and S. Kalliadasis. Semiparametric drift and diffusion estimation for multiscale diffusions. Multiscale Model. Simul., 11(2):442–473, 2013.

    MATH  MathSciNet  Google Scholar 

  247. I.A. Khovanov, A.V. Polovinkin, D.G. Luchinsky, and P.V.E. McClintock. Noise-induced escape in an excitable system. Phys. Rev. E, 87:032116, 2013.

    Google Scholar 

  248. Y.M. Kabanov, S.M. Pergamenshchikov, and J.M. Stoyanov. Asymptotic expansions for singularly perturbed stochastic differential equations. In V. Sazanov and T. Shervashidze, editors, New Trends in Probability and Statistics - In Honor of Yu. Prohorov, pages 413–435. VSP, 1991.

    Google Scholar 

  249. H.A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304, 1940.

    MATH  MathSciNet  Google Scholar 

  250. V. Krishnamurthy, K. Topley, and G. Yin. Consensus formation in a two-time-scale Markovian system. Multiscale Model. Simul., 7(4):1898–1927, 2009.

    MATH  MathSciNet  Google Scholar 

  251. C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM J. Sci. Comp., 34(3):A1635–A1658, 2012.

    MATH  MathSciNet  Google Scholar 

  252. C. Kuehn. Time-scale and noise optimality in self-organized critical adaptive networks. Phys. Rev. E, 85(2):026103, 2012.

    Google Scholar 

  253. H.J. Kushner. Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems. Birkhäuser, 1990.

    Google Scholar 

  254. R. Kuske. Probability densities for noisy delay bifurcation. J. Stat. Phys., 96(3):797–816, 1999.

    MATH  MathSciNet  Google Scholar 

  255. R. Kuske. Gradient-particle solutions of Fokker–Planck equations for noisy delay bifurcations. SIAM J. Sci. Comput., 22(1):351–367, 2000.

    MATH  MathSciNet  Google Scholar 

  256. R. Kuske. Multi-scale analysis of noise-sensitivity near a bifurcation. In IUTAM Symposium on Nonlinear Stochastic Dynamics, pages 147–156. Springer, 2003.

    Google Scholar 

  257. R. Kuske. Competition of noise sources in systems with delay: the role of multiple time scales. J. Vibration and Control, 16(7):983–1003, 2010.

    MATH  MathSciNet  Google Scholar 

  258. F. Kwasniok. Analysis and modelling of glacial climate transitions using simple dynamical systems. Phil. Trans. R. Soc. A, 371(1991):20110472, 2013.

    Google Scholar 

  259. R.Z. Khasminskii and G. Yin. Asymptotic expansions of singularly perturbed systems involving rapidly fluctuating Markov chains. SIAM J. Appl. Math., 56(1):277–293, 1996.

    MATH  MathSciNet  Google Scholar 

  260. R.Z. Khasminskii and G. Yin. Asymptotic series for singularly perturbed Kolmogorov–Fokker–Planck equations. SIAM J. Appl. Math., 56(6):1766–1793, 1996.

    MATH  MathSciNet  Google Scholar 

  261. R.Z. Khasminskii and G. Yin. On transition densities of singularly perturbed diffusions with fast and slow components. SIAM J. Appl. Math., 56(6):1794–1819, 1996.

    MATH  MathSciNet  Google Scholar 

  262. R.Z. Khasminskii and G. Yin. Constructing asymptotic series for probability distributions of Markov chains with weak and strong interactions. Quart. Appl. Math., 55(1):177–200, 1997.

    MATH  MathSciNet  Google Scholar 

  263. R.Z. Khasminskii and G. Yin. Singularly perturbed switching diffusions: rapid switchings and fast diffusions. J. Optim. Theor. Appl., 102(3):555–591, 1999.

    MATH  MathSciNet  Google Scholar 

  264. R.Z. Khasminskii and G. Yin. On averaging principles: an asymptotic expansion approach. SIAM J. Math. Anal., 35(6):1534–1560, 2004.

    MATH  MathSciNet  Google Scholar 

  265. R.Z. Khasminskii and G. Yin. Limit behavior of two-time-scale diffusions revisited. J. Differential Equat., 212(1):85–113, 2005.

    MATH  MathSciNet  Google Scholar 

  266. P. Langevin. Sur la théorie du mouvement brownien. Compte-rendus des séances de l’Académie des sciences, 146:530–534, 1908.

    MATH  Google Scholar 

  267. A. Longtin and D.R. Chialvo. Stochastic and deterministic resonances for excitable systems. Phys. Rev. Lett., 81(18):4012–4015, 1998.

    Google Scholar 

  268. B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier. Effects of noise in excitable systems. Physics Reports, 392:321–424, 2004.

    Google Scholar 

  269. X.M. Li. An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlinearity, 21(4):803–822, 2008.

    MATH  MathSciNet  Google Scholar 

  270. B. Lindner. Interspike interval statistics of neurons driven by colored noise. Phys. Rev. E, 69:022901, 2004.

    Google Scholar 

  271. R. Liptser. Large deviations for two scaled diffusions. Prob. Theor. Rel. Fields, 106:71–104, 1996.

    MATH  MathSciNet  Google Scholar 

  272. C. Laing and G. Lord, editors. Stochastic Methods in Neuroscience. OUP, 2009.

    Google Scholar 

  273. S. Lahbabi and F. Legoll. Effective dynamics for a kinetic Monte-Carlo model with slow and fast time scales. arXiv:1301.0266v1, pages 1–44, 2013.

    Google Scholar 

  274. J. Li, K. Lu, and P. Bates. Normally hyperbolic invariant manifolds for random dynamical systems: Part I - persistence. Trans. Amer. Math. Soc., 365(11):5933–5966, 2013.

    MATH  MathSciNet  Google Scholar 

  275. J. Lei, M.C. Mackey, R. Yvinec, and C. Zhuge. Adiabatic reduction of a piecewise deterministic Markov model of stochastic gene expression with bursting transcription. arXiv:1202.5411, pages 1–39, 2012.

    Google Scholar 

  276. A. Longtin. Autonomous stochastic resonance in bursting neurons. Phys. Rev. E, 55(1):868–876, 1997.

    Google Scholar 

  277. G.D. Lythe and M.R.E. Proctor. Noise and slow–fast dynamics in a three-wave resonance problem. Phys. Rev. E, 47:3122–3127, 1993.

    Google Scholar 

  278. R. Liptser and V. Spokoiny. On estimating a dynamic function of a stochastic system with averaging. Stat. Inf. Stoch. Proc., 3(3):225–249, 2000.

    MATH  MathSciNet  Google Scholar 

  279. B. Lindner and L. Schimansky-Geier. Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E, 60(6):7270–7276, 1999.

    Google Scholar 

  280. B. Lindner and L. Schimansky-Geier. Coherence and stochastic resonance in a two-state system. Phys. Rev. E, 61(6):6103–6110, 2000.

    Google Scholar 

  281. T. Lelièvre, G. Stoltz, and M. Rousset. Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys., 126:134111, 2007.

    Google Scholar 

  282. T. Lelièvre, G. Stoltz, and M. Rousset. Free Energy Computations: A Mathematical Perspective. World Scientific, 2010.

    Google Scholar 

  283. G.D. Lythe. Noise and dynamic transitions. In Stochastic Partial Differential Equations (Edinburgh, 1994), pages 181–188. Springer, 1995.

    Google Scholar 

  284. G.D. Lythe. Domain formation in transitions with noise and a time-dependent bifurcation parameter. Phys. Rev. E, 53:4271, 1996.

    Google Scholar 

  285. A.J. Majda, R.V. Abramov, and M.J. Grote. Information Theory and Stochastics for Multiscale Nonlinear Systems. AMS, 2005.

    Google Scholar 

  286. P. Mathieu. Spectra, exit times and long time asymptotics in the zero-white-noise limit. Stoch. Stoch. Rep., 55(1):1–20, 1995.

    MATH  MathSciNet  Google Scholar 

  287. W.W. Mohammed, D. Blömker, and K. Klepel. Modulation equation for stochastic Swift–Hohenberg equation. SIAM J. Math. Anal., 45(1):14–30, 2013.

    MATH  MathSciNet  Google Scholar 

  288. F. Marchesoni, L. Gammaitoni, and A.R. Bulsara. Spatiotemporal stochastic resonance in a ϕ 4 model of kink-antikink nucleation. Phys. Rev. Lett., 76(15):2609, 1995.

    Google Scholar 

  289. P.D. Miller. Applied Asymptotic Analysis. AMS, 2006.

    Google Scholar 

  290. G.B. Di Masi and Y.M. Kabanov. The strong convergence of two-scale stochastic systems and singular perturbations of filtering equations. J. Math. Syst. Est. Contr., 3:207–224, 1993.

    MATH  Google Scholar 

  291. F. Martinelli, E. Olivieri, and E. Scoppola. Small random perturbations of finite-and infinite-dimensional dynamical systems: unpredictability of exit times. J. Stat. Phys., 55(3):477–504, 1989.

    MATH  MathSciNet  Google Scholar 

  292. A. Mokkadem and M. Pelletier. A generalization of the averaging procedure: the use of two-time-scale algorithms. SIAM J. Control Optim., 49(4):1523–1543, 2011.

    MATH  MathSciNet  Google Scholar 

  293. B.J. Matkowsky and Z. Schuss. The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math., 33(2):365–382, 1977.

    MATH  MathSciNet  Google Scholar 

  294. B.J. Matkowsky and Z. Schuss. The exit problem: a new approach to diffusion across potential barriers. SIAM J. Appl. Math., 36(3):604–623, 1979.

    MATH  MathSciNet  Google Scholar 

  295. B.J. Matkowsky and Z. Schuss. Diffusion across characteristic boundaries. SIAM J. Appl. Math., 42(4):822–834, 1982.

    MATH  MathSciNet  Google Scholar 

  296. B.J. Matkowsky and Z. Schuss. Uniform asymptotic expansions in dynamical systems driven by colored noise. Phys. Rev. A, 38(5):2605, 1988.

    Google Scholar 

  297. R.S. Maier and D.L. Stein. Transition-rate theory for nongradient drift fields. Phys. Rev. Lett., 69(26):3691, 1992.

    Google Scholar 

  298. R.S. Maier and D.L. Stein. Effect of focusing and caustics on exit phenomena in systems lacking detailed balance. Phys. Rev. Lett., 71(12):1783, 1993.

    Google Scholar 

  299. R.S. Maier and D.L. Stein. Escape problem for irreversible systems. Phys. Rev. E, 48(2):931, 1993.

    Google Scholar 

  300. R.S. Maier and D.L. Stein. Oscillatory behavior of the rate of escape through an unstable limit cycle. Phys. Rev. Lett., 77(24):4860, 1996.

    Google Scholar 

  301. R.S. Maier and D.L. Stein. A scaling theory of bifurcations in the symmetric weak-noise escape problem. J. Stat. Phys., 83(3):291–357, 1996.

    MATH  MathSciNet  Google Scholar 

  302. R.S. Maier and D.L. Stein. Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math., 57(3):752–790, 1997.

    MATH  MathSciNet  Google Scholar 

  303. R.S. Maier and D.L. Stein. Noise-activated escape from a sloshing potential well. Phys. Rev. Lett., 86(18):3942, 2001.

    Google Scholar 

  304. B.J. Matkowsky, Z. Schuss, and E. Ben-Jacob. A singular perturbation approach to Kramers’ diffusion problem. SIAM J. Appl. Math., 42(4):835–849, 1982.

    MATH  MathSciNet  Google Scholar 

  305. B.J. Matkowsky, Z. Schuss, C. Knessl, C. Tier, and M. Mangel. Asymptotic solution of the Kramers–Moyal equation and first-passage times for Markov jump processes. Phys. Rev. A, 29(6):3359, 1984.

    Google Scholar 

  306. B.J. Matkowsky, Z. Schuss, and C. Tier. Diffusion across characteristic boundaries with critical points. SIAM J. Appl. Math., 43(4):673–695, 1983.

    MATH  MathSciNet  Google Scholar 

  307. P. Metzner, C. Schütte, and E. Vanden-Eijnden. Illustration of transition path theory on a collection of simple examples. J. Chem. Phys., 125:084110, 2006.

    Google Scholar 

  308. P. Metzner, C. Schütte, and E. Vanden-Eijnden. Transition path theory for Markov jump processes. Multiscale Model. Simul., 7(3):1192–1219, 2009.

    MATH  Google Scholar 

  309. S. Méléard and V.C. Tran. Slow and fast scales for superprocess limits of age-structured populations. Stochastic Process. Appl., 122:250–276, 2012.

    MATH  MathSciNet  Google Scholar 

  310. A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Models for stochastic climate prediction. Proc. Nat. Acad. USA, 96:14687–14691, 1999.

    MATH  MathSciNet  Google Scholar 

  311. A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A mathematical framework for stochastic climate models. Comm. Pure and Appl. Math., 54:891–974, 2001.

    MATH  MathSciNet  Google Scholar 

  312. A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A priori tests of a stochastic mode reduction strategy. Physica D, 170:206–252, 2002.

    MATH  MathSciNet  Google Scholar 

  313. A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Systematic strategies for stochastic mode reduction in climate. J. Atmosph. Sci., 60:1705–1722, 2003.

    MathSciNet  Google Scholar 

  314. A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Stochastic models for selected slow variables in large deterministic systems. Nonlinearity, 19:769–794, 2006.

    MATH  MathSciNet  Google Scholar 

  315. T. Munakata. Hydrodynamic equations from Fokker–Planck equations - multiple time scale method. J. Phys. Soc. Japan, 46:748–755, 1979.

    MathSciNet  Google Scholar 

  316. C.B. Muratov and E. Vanden-Eijnden. Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle. Chaos, 18:015111, 2008.

    MathSciNet  Google Scholar 

  317. C.B. Muratov, E. Vanden-Eijnden, and W. E. Self-induced stochastic resonance in excitable systems. Physica D, 210:227–240, 2005.

    Google Scholar 

  318. S. Namachchivaya. Stochastic bifurcation. Appl. Math. Comp., 38:101–159, 1990.

    MATH  Google Scholar 

  319. K. Narita. Asymptotic analysis for interactive oscillators of the van der Pol type. Adv. Appl. Prob., 19:44–80, 1987.

    MATH  MathSciNet  Google Scholar 

  320. K. Narita. Asymptotic behavior of velocity process in the Smoluchowski-Kramers approximation for stochastic differential equations. Adv. Appl. Prob., 23:317–326, 1991.

    MATH  MathSciNet  Google Scholar 

  321. K. Narita. Asymptotic behavior of solutions of SDE for relaxation oscillations. SIAM J. Math. Anal., 24(1):172–199, 1993.

    MATH  MathSciNet  Google Scholar 

  322. J.M. Newby, P.C. Bressloff, and J.P. Keener. Breakdown of fast–slow analysis in an excitable system with channel noise. Phys. Rev. Lett., 111(12):128101, 2013.

    Google Scholar 

  323. T. Naeh, M.M. Klosek, B.J. Matkowsky, and Z. Schuss. A direct approach to the exit problem. SIAM J. Appl. Math., 50(2):595–627, 1990.

    MATH  MathSciNet  Google Scholar 

  324. C. Nicolis and G. Nicolis. Stochastic aspects of climatic transitions—additive fluctuations. Tellus, 33(3):225–234, 1981.

    MathSciNet  Google Scholar 

  325. F. Noé and F. Nüske. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul., 11(2):635–655, 2013.

    MATH  MathSciNet  Google Scholar 

  326. J.R. Norris. Markov Chains. Cambridge University Press, 2006.

    Google Scholar 

  327. E. Nummelin. General irreducible Markov chains and nonnegative operators, volume 84 of Tracts in Mathematics. CUP, 1984.

    Google Scholar 

  328. S.L. Nguyen and G. Yin. Asymptotic properties of Markov-modulated random sequences with fast and slow timescales. Stochastics, 82(4):445–474, 2010.

    MATH  MathSciNet  Google Scholar 

  329. N. O’Bryant. A noisy system with a flattened Hamiltonian and multiple time scales. Stoch. Dyn., 3(1):1–54, 2003.

    MATH  MathSciNet  Google Scholar 

  330. B. Øksendal. Stochastic Differential Equations. Springer, Berlin Heidelberg, Germany, 5th edition, 2003.

    Google Scholar 

  331. M. Ottobre and G.A. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlinearity, 24(5):1629, 2011.

    Google Scholar 

  332. E. Olivieri and E. Scoppola. Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case. J. Stat. Phys., 79(3):613–647, 1995.

    Google Scholar 

  333. E. Olivieri and E. Scoppola. Markov chains with exponentially small transition probabilities: first exit problem from a general domain. II. The general case. J. Stat. Phys., 84(5):987–1041, 1996.

    Google Scholar 

  334. E. Olivieri and M.E. Vares. Large Deviations and Metastability. CUP, 2005.

    Google Scholar 

  335. G.C. Papanicolaou. Some probabilistic problems and methods in singular perturbations. Rocky Mountain J. Math., 6:653–674, 1976.

    MATH  MathSciNet  Google Scholar 

  336. G.C. Papanicolaou. Introduction to the asymptotic analysis of stochastic equations. In Modern Modeling of Continuum Phenomena, volume 16 of Lect. Appl. Math., pages 109–147. AMS, 1977.

    Google Scholar 

  337. G.A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344(5):331–345, 2005.

    MATH  Google Scholar 

  338. S. Pergamenshchikov. Asymptotic expansions for a model with distinguished ‘fast’ and ‘slow’ variables, described by a system of singularly perturbed stochastic differential equations. Russ. Math. Surv., 49(4):1–44, 1994.

    MATH  MathSciNet  Google Scholar 

  339. G.C. Papanicolaou and W. Kohler. Asymptotic analysis of deterministic and stochastic equations with rapidly varying components. Comm. Math. Phys., 45(3):217–232, 1975.

    MATH  MathSciNet  Google Scholar 

  340. A.S. Pikovsky and J. Kurths. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78:775–778, 1997.

    MATH  MathSciNet  Google Scholar 

  341. P. Pfaffelhuber and L. Popovic. Scaling limits of spatial chemical reaction networks. arXiv:1302.0774v1, pages 1–50, 2013.

    Google Scholar 

  342. A. Papavasiliou, G.A. Pavliotis, and A.M. Stuart. Maximum likelihood drift estimation for multiscale diffusions. Stoch. Proc. Appl., 119(10):3173–3210, 2009.

    MATH  MathSciNet  Google Scholar 

  343. P. Protter. Stochastic Integration and Differential Equations - Version 2.1. Springer, 2005.

    Google Scholar 

  344. G.A. Pavliotis and A.M. Stuart. Analysis of white noise limits for stochastic systems with two fast relaxation times. Multiscale Model. Simul., 4(1):1–35, 2005.

    MATH  MathSciNet  Google Scholar 

  345. G.A. Pavliotis and A.M. Stuart. Periodic homogenization for inertial particles. Physica D, 204(3): 161–187, 2005.

    MATH  MathSciNet  Google Scholar 

  346. V.A. Pliss and G.R. Sell. Averaging methods for stochastic dynamics of complex reaction networks: description of multiscale couplings. Multiscale Model. Simul., 5(2):497–513, 2006.

    MathSciNet  Google Scholar 

  347. G.A. Pavliotis and A.M. Stuart. Parameter estimation for multiscale diffusions. J. Stat. Phys., 127(4):741–781, 2007.

    MATH  MathSciNet  Google Scholar 

  348. M.A. Peletier, G. Savaré, and M. Veneroni. From diffusion to reaction via Γ-convergence. SIAM J. Math. Anal., 42(4):1805–1825, 2010.

    MATH  MathSciNet  Google Scholar 

  349. M.A. Peletier, G. Savaré, and M. Veneroni. Chemical reactions as Γ-limit of diffusion. SIAM Rev., 54(2):327–352, 2012.

    MATH  MathSciNet  Google Scholar 

  350. G.A. Pavliotis, A.M. Stuart, and K.C. Zygalakis. Homogenization for inertial particles in a random flow. Comm. Math. Sci., 5(3):506–531, 2007.

    MathSciNet  Google Scholar 

  351. M. Pradas, D. Tseluiko, S. Kalliadasis, D.T. Papageorgiou, and G.A. Pavliotis. Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. Phys. Rev. Lett., 106(6):060602, 2011.

    Google Scholar 

  352. A.A. Puhalskii. Large deviations of coupled diffusions with time scale separation. arXiv:1306.5446v1, pages 1–74, 2013.

    Google Scholar 

  353. E. Pardoux and Yu. Veretennikov. On the Poisson equation and diffusion approximation. I. Ann. Probab., 29(3):1061–1085, 2001.

    Google Scholar 

  354. S. Pillay, M.J. Ward, A. Peirce, and T. Kolokolnikov. An asymptotic analysis of the mean first passage time for narrow escape problems: Part I Two-dimensional domains. Multiscale Mod. Simul., 8(3):803–835, 2010.

    MATH  MathSciNet  Google Scholar 

  355. G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge University Press, 1992.

    Google Scholar 

  356. V.D. Razevig. Reduction of stochastic differential equations with small parameters and stochastic integrals. Int. J. Contr., 28(5):707–720, 1978.

    MATH  MathSciNet  Google Scholar 

  357. J. Ren and J. Duan. A parameter estimation method based on random slow manifolds. arXiv:1303.4600, pages 1–16, 2013.

    Google Scholar 

  358. J. Ren, J. Duan, and C.K.R.T. Jones. Approximation of random slow manifolds and settling of inertial particles under uncertainty. arXiv:1212.4216v1, pages 1–26, 2012.

    Google Scholar 

  359. S.I. Resnick. Adventures in Stochastic Processes. Birkhäuser, 1992.

    Google Scholar 

  360. H. Risken. The Fokker–Planck Equation. Springer, 1996.

    Google Scholar 

  361. V.M. Rozenbaum, Yu.A. Makhnovskii, I.V. Shapochkina S.-Y. Sheu, D.-Y. Yamg and S.H. Lin. Adiabatically slow and adiabatically fast driven ratchets. Phys. Rev. E, 85:041116, 2012.

    Google Scholar 

  362. S. Ross. A First Course in Probability. Pearson Prentice Hall, 2006.

    Google Scholar 

  363. J.R. Rohlicek and A.S. Willsky. Multiple time scale decomposition of discrete time Markov chains. Syst. Contr. Lett., 11(4):309–314, 1988.

    MATH  MathSciNet  Google Scholar 

  364. Z. Schuss. Singular perturbation methods in stochastic differential equations of mathematical physics. SIAM Rev., 22(2):119–155, 1980.

    MATH  MathSciNet  Google Scholar 

  365. Z. Schuss. Theory and Applications of Stochastic Processes: An Analytical Approach. Springer, 2009.

    Google Scholar 

  366. G. Schmid, I. Goychuk, and P. Hänggi. Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett., 56(1):22, 2001.

    Google Scholar 

  367. K.R. Schenk-Hoppé. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator. Nonlinear Dyn., 11:255–274, 1996.

    Google Scholar 

  368. K.R. Schenk-Hoppé. Random attractors - general properties, existence and applications to stochastic bifurcation theory. Discr. Cont. Dyn. Syst. A, 4(1):99–130, 1998.

    MATH  Google Scholar 

  369. B. Simon. Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: Asymptotic expansions. Ann. IHP (A) Phys. Théor., 38(3):295–308, 1983.

    Google Scholar 

  370. B. Simon. Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann. Math., 120:89–118, 1984.

    Google Scholar 

  371. D.J.W. Simpson and R. Kuske. Mixed-mode oscillations in a stochastic, piecewise-linear system. Physica D, 240(14):1189–1198, 2011.

    MATH  Google Scholar 

  372. T. Schäfer and R.O. Moore. A path integral method for coarse-graining noise in stochastic differential equations with multiple time scales. Physica D, 240:89–97, 2011.

    MATH  MathSciNet  Google Scholar 

  373. M. Sieber, H. Malchow, and L. Schimansky-Geier. Constructive effects of environmental noise in an excitable prey–predator plankton system with infected prey. Ecol. Complex., 4(4):223–233, 2007.

    Google Scholar 

  374. D.L. Stein and C.M. Newman. Rugged landscapes and timescale distributions in complex systems. In Emergence, Complexity, and Computation. Springer, 2013. to appear.

    Google Scholar 

  375. R.B. Sowers. On the tangent flow of a stochastic differential equation with fast drift. Trans. Amer. Math. Soc., 353(4):1321–1334, 2001.

    MATH  MathSciNet  Google Scholar 

  376. R.B. Sowers. Stochastic averaging with a flattened Hamiltonian: a Markov process on a stratified space (a whiskered sphere). Trans. Amer. Math. Soc., 354(3):853–900, 2002.

    MATH  MathSciNet  Google Scholar 

  377. R.B. Sowers. Random perturbations of canards. J. Theor. Probab., 21:824–889, 2008.

    MATH  MathSciNet  Google Scholar 

  378. K. Spiliopoulos. Fluctuation analysis and short time asymptotics for multiple scales diffusion processes. arXiv:1306:1499v1, pages 1–18, 2013.

    Google Scholar 

  379. K. Spiliopoulos. Large deviations and importance sampling for systems of slow–fast motion. Appl. Math. Optim., 67(1):123–161, 2013.

    MATH  MathSciNet  Google Scholar 

  380. J. Su, J. Rubin, and D. Terman. Effects of noise on elliptic bursters. Nonlinearity, 17:133–157, 2004.

    MATH  MathSciNet  Google Scholar 

  381. B. Schmalfuss and K.R. Schneider. Invariant manifolds for random dynamical systems with slow and fast variables. J. Dyn. Diff. Eq., 20(1):133–164, 2008.

    MATH  MathSciNet  Google Scholar 

  382. A.M. Samoilenko and O. Stanzhytskyi. Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations. World Scientific, 2011.

    Google Scholar 

  383. M. Sarich and C. Schütte. Approximating selected non-dominant timescales by Markov state models. Comm. Math. Sci., 10(3):1001–1013, 2011.

    Google Scholar 

  384. A. Singer, Z. Schuss, and D. Holcman. Narrow escape, part II: The circular disk. J. Stat. Phys., 122(3):465–489, 2006.

    MATH  MathSciNet  Google Scholar 

  385. A. Singer, Z. Schuss, and D. Holcman. Narrow escape, part III: Non-smooth domains and Riemann surfaces. J. Stat. Phys., 122(3):491–509, 2006.

    MATH  MathSciNet  Google Scholar 

  386. Z. Schuss, A. Singer, and D. Holcman. The narrow escape problem for diffusion in cellular microdomains. Proc. Natl. Acad. Sci. USA, 104(41):16098–16103, 2007.

    Google Scholar 

  387. A. Singer, Z. Schuss, and D. Holcman. Narrow escape and leakage of brownian particles. Phys. Rev. E, 78(5):051111, 2008.

    Google Scholar 

  388. A. Singer, Z. Schuss, D. Holcman, and R.S. Eisenberg. Narrow escape, part I. J. Stat. Phys., 122(3):437–463, 2006.

    MATH  MathSciNet  Google Scholar 

  389. D.L. Stein. Critical behavior of the Kramers escape rate in asymmetric classical field theories. J. Stat. Phys., 114(5):1537–1556, 2004.

    MATH  Google Scholar 

  390. M. Sugiura. Metastable behaviors of diffusion processes with small parameter. J. Math. Soc. Japan, 47(4):755–788, 1995.

    MATH  MathSciNet  Google Scholar 

  391. C. Schütte, J. Walter, C. Hartmann, and W. Huisinga. An averaging principle for fast degrees of freedom exhibiting long-term correlations. Multiscale Model. Simul., 2(3):501–526, 2004.

    MATH  MathSciNet  Google Scholar 

  392. P. Talkner. Stochastic resonance in the semiadiabatic limit. New J. Phys., 1(1):4, 1999.

    Google Scholar 

  393. P. Thomas, R. Grima, and A.V. Straube. Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators. Phys. Rev. E, 86:041110, 2012.

    Google Scholar 

  394. D.N.C. Tse, R.G. Gallager, and J.N. Tsitsiklis. Statistical multiplexing of multiple time-scale Markov streams. IEEE J. Selected Areas in Comm., 13(6):1028–1038, 1995.

    Google Scholar 

  395. J. Touboul, M. Krupa, and M. Desroches. Noise-induced canard and mixed-mode oscillations in large stochastic networks with multiple timescales. arXiv:1302:7159v1, pages 1–22, 2013.

    Google Scholar 

  396. M.C. Torrent and M. San Miguel. Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter. Phys. Rev. A, 38(1):245–251, 1988.

    Google Scholar 

  397. H.C. Tuckwell and R. Rodriguez. Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks. J. Comput. Neurosci., 5(1):91–113, 1998.

    MATH  Google Scholar 

  398. P. Thomas, A.V. Straube, and R. Grima. Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks. J. Chem. Phys., 135(18):181103, 2011.

    Google Scholar 

  399. S.R.S. Varadhan. Large Deviations and Applications. SIAM, 1984.

    Google Scholar 

  400. S.R.S. Varadhan. Large deviations. Ann. Probab., 36(2):397–419, 2008.

    MATH  MathSciNet  Google Scholar 

  401. N.G. van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, 2007.

    Google Scholar 

  402. S. Varela, C. Masoller, and A.C. Sicardi. Numerical simulations of the effect of noise on a delayed pitchfork bifurcation. Physica A, 283(1):228–232, 2000.

    Google Scholar 

  403. G. De Vries and A. Sherman. Channel sharing in pancreatic-β-cells revisited: enhancement of emergent bursting by noise. J. Theor. Biol., 207(4):513–530, 2000.

    Google Scholar 

  404. G. Wainrib. Noise-controlled dynamics through the averaging principle for stochastic slow–fast systems. Phys. Rev. E, 84:051113, 2011.

    Google Scholar 

  405. D. Wycoff and N.L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation. Phys. A, 146:175–200, 1987.

    MathSciNet  Google Scholar 

  406. D. Wycoff and N.L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation with a weak magnetic field. Phys. A, 146:201–218, 1987.

    MathSciNet  Google Scholar 

  407. D. Wycoff and N.L. Balazs. Separation of fast and slow variables for a linear system by the method of multiple time scales. Phys. A, 146:219–241, 1987.

    MathSciNet  Google Scholar 

  408. W. Wang and J. Duan. Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions. Comm. Math. Phys., 275:163–186, 2007.

    MATH  MathSciNet  Google Scholar 

  409. W. Wang and J. Duan. Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions. Stoch. Anal. Appl., 27(3):431–459, 2009.

    MATH  MathSciNet  Google Scholar 

  410. W. Wang, D. Cao, and J. Duan. Effective macroscopic dynamics of stochastic partial differential equations in perforated domains. SIAM J. Math. Anal., 38:1508–1527, 2007.

    MATH  MathSciNet  Google Scholar 

  411. A.D. Wentzell and M.I. Freidlin. On small random perturbations of dynamical systems. Russ. Marth. Surv., 25:1–55, 1970.

    Google Scholar 

  412. A.D. Wentzell and M.I. Freidlin. Some problems concerning stability under small random perturbations. Theory Probab. Appl., 17(2):269–283, 1973.

    Google Scholar 

  413. M.J. Ward, W.D. Heshaw, and J.B. Keller. Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math., 53(3):799–828, 1993.

    MATH  MathSciNet  Google Scholar 

  414. D. Williams. Probability with Martingales. CUP, 1991.

    Google Scholar 

  415. M.J. Ward and J.B. Keller. Strong localized perturbations of eigenvalue problems. SIAM J. Appl. Math., 53(3):770–798, 1993.

    MATH  MathSciNet  Google Scholar 

  416. W. Wang and A.J. Roberts. Average and deviation for slow–fast stochastic partial differential equations. J. Differential Equat., 253(5):1265–1286, 2012.

    MATH  MathSciNet  Google Scholar 

  417. W. Wang and A.J. Roberts. Slow manifold and averaging for slow–fast stochastic differential system. J. Math. Anal. Appl., 398(2):822–839, 2013.

    MATH  MathSciNet  Google Scholar 

  418. W. Wang, A.J. Roberts, and J. Duan. Large deviations and approximations for slow–fast stochastic reaction–diffusion equations. J. Differential Equat., 12:3501–3522, 2012.

    MathSciNet  Google Scholar 

  419. J. Walter and C. Schütte. Conditional averaging for diffusive fast–slow systems: a sketch for derivation. In Analysis, Modeling and Simulation of Multiscale Problems, pages 647–682. Springer, 2006.

    Google Scholar 

  420. T. Wellens, V. Shatokhin, and A. Buchleitner. Stochastic resonance. Reports on Progress in Physics, 67:45–105, 2004.

    Google Scholar 

  421. J. Wang, J. Su, H. Perez Gonzalez, and J. Rubin. A reliability study of square wave bursting beta-cells with noise. Discr. Cont. Dyn. Syst. B, 16:569–588, 2011.

    MATH  MathSciNet  Google Scholar 

  422. J.W. Wang, Q. Zhang, and G. Yin. Two-time-scale hybrid filters: near optimality. SIAM J. Contr. Optim., 45:298–319, 2006.

    MathSciNet  Google Scholar 

  423. Y. Xu, J. Duan, and W. Xu. An averaging principle for stochastic dynamical systems with Lévy noise. Physica D, 240(17):1395–1401, 2011.

    MATH  MathSciNet  Google Scholar 

  424. G. Yin and S. Dey. Weak convergence of hybrid filtering problems involving nearly completely decomposable hidden Markov chains. SIAM J. Contr. Optim., 41(6):1820–1842, 2003.

    MATH  MathSciNet  Google Scholar 

  425. G. Yin. On limit results for a class of singularly perturbed switching diffusions. J. Theor. Prob., 14(3):673–697, 2001.

    MATH  Google Scholar 

  426. G. Yin and M. Kniazeva. Singularly perturbed multidimensional switching diffusions with fast and slow switchings. J. Math. Anal. Appl., 229(2):605–630, 1999.

    MATH  MathSciNet  Google Scholar 

  427. G. Yin and V. Krishnamurthy. Least mean square algorithms with Markov regime-switching limit. IEEE Trans. Aut. Contr., 50(5):577–593, 2005.

    MathSciNet  Google Scholar 

  428. N. Yu, R. Kuske, and Y.X. Li. Stochastic phase dynamics: multiscale behavior and coherence measures. Phys. Rev. E, 73(5):056205, 2006.

    Google Scholar 

  429. N. Yu, R. Kuske, and Y.X. Li. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators. Chaos, 18:015112, 2008.

    MathSciNet  Google Scholar 

  430. R. Yvinec. Adiabatic reduction of models of stochastic gene expression with bursting. arXiv:1301.1293v1, pages 1–24, 2013.

    Google Scholar 

  431. G. Yin and H. Yang. Two-time-scale jump-diffusion models with Markovian switching regimes. Stoch. Stoch. Rep., 76(2):77–99, 2004.

    MATH  MathSciNet  Google Scholar 

  432. H. Yang, G. Yin, K. Yin, and Q. Zhang. Control of singularly perturbed Markov chains: a numerical study. ANZIAM J., 45:49–74, 2002.

    MATH  MathSciNet  Google Scholar 

  433. G. Yin and Q. Zhang. Near optimality of stochastic control in systems with unknown parameter processes. Appl. Math. Optim., 29(3):263–284, 1994.

    MATH  MathSciNet  Google Scholar 

  434. G. Yin and Q. Zhang. Control of dynamic systems under the influence of singularly perturbed Markov chains. J. Math. Anal. Appl., 216(1):343–367, 1997.

    MATH  MathSciNet  Google Scholar 

  435. G.G. Yin and Q. Zhang. Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach. Springer, 1998.

    Google Scholar 

  436. G. Yin and Q. Zhang. Singularly perturbed discrete-time Markov chains. SIAM J. Appl. Math., 61(3):834–854, 2000.

    MATH  MathSciNet  Google Scholar 

  437. G. Yin and H. Zhang. Countable-state-space Markov chains with two time scales and applications to queueing systems. Adv. Appl. Prob., 34(3):662–688, 2002.

    MATH  MathSciNet  Google Scholar 

  438. G. Yin and Q. Zhang. Hybrid singular systems of differential equations. Science China F, 45(4): 241–258, 2002.

    MATH  MathSciNet  Google Scholar 

  439. G. Yin and Q. Zhang. Discrete-time singularly perturbed Markov chains. In Stochastic Modeling and Optimization, pages 1–42. Springer, 2003.

    Google Scholar 

  440. G. Yin and Q. Zhang. Two-time-scale Markov chains and applications to quasi-birth-death queues. SIAM J. Appl. Math., 65(2):567–586, 2004.

    MathSciNet  Google Scholar 

  441. G.G. Yin and Q. Zhang. Discrete-time Markov Chains: Two-Time-Scale Methods and Applications. Springer, 2005.

    Google Scholar 

  442. G. Yin and Q. Zhang. Singularly perturbed Markov chains: limit results and applications. Ann. Appl. Prob., 17(1):207–229, 2007.

    MATH  MathSciNet  Google Scholar 

  443. G. Yin and Q. Zhang. Discrete-time Markov chains with two-time scales and a countable state space: limit results and queueing applications. Stochastics, 80(4):339–369, 2008.

    MATH  MathSciNet  Google Scholar 

  444. G.G. Yin and C. Zhu. Hybrid Switching Diffusions: Properties and Applications. Springer, 2010.

    Google Scholar 

  445. G. Yin, Q. Zhang, and G. Badowski. Asymptotic properties of a singularly perturbed Markov chain with inclusion of transient states. Ann. Appl. Math., 10(2):549–572, 2000.

    MATH  MathSciNet  Google Scholar 

  446. G. Yin, Q. Zhang, and G. Badowski. Occupation measures of singularly perturbed Markov chains with absorbing states. Acta Math. Sinica, 16(1):161–180, 2000.

    MATH  MathSciNet  Google Scholar 

  447. G. Yin, Q. Zhang, and G. Badowski. Singularly perturbed Markov chains: convergence and aggregation. J. Multivar. Anal., 72(2):208–229, 2000.

    MATH  MathSciNet  Google Scholar 

  448. Q. Zhang, J. Gong, and C.H. Oh. Intrinsic dynamical fluctuation assisted symmetry breaking in adiabatic following. Phys. Rev. Lett., 110:130402, 2013.

    Google Scholar 

  449. Q. Zhang. Risk-sensitive production planning of stochastic manufacturing systems: a singular perturbation approach. SIAM J. Contr. Optim., 33(2):498–527, 1995.

    MATH  Google Scholar 

  450. Q. Zhang. Finite state Markovian decision processes with weak and strong interactions. Stochastics, 59(3):283–304, 1996.

    MATH  MathSciNet  Google Scholar 

  451. H. Zeghlache, P. Mandel, and C. Van den Broeck. Influence of noise on delayed bifurcations. Phys. Rev. A, 40:286–294, 1989.

    Google Scholar 

  452. Q. Zhang and G.G. Yin. A central limit theorem for singularly perturbed nonstationary finite state Markov chains. Ann. Appl. Prob., 6(2):650–670, 1996.

    MATH  MathSciNet  Google Scholar 

  453. Q. Zhang and G.G. Yin. On nearly optimal controls of hybrid LQG problems. IEEE Trans. Aut. Contr., 44(12):2271–2282, 1999.

    MATH  MathSciNet  Google Scholar 

  454. Q. Zhang and G.G. Yin. Exponential bounds for discrete-time singularly perturbed Markov chains. J. Math. Anal. Appl., 293(2):645–662, 2004.

    MATH  MathSciNet  Google Scholar 

  455. Q. Zhang, G.G. Yin, and E.K. Boukas. Controlled Markov chains with weak and strong interactions: asymptotic optimality and applications to manufacturing. J. Optim. Theor. Appl., 94(1):169–194, 1997.

    MATH  MathSciNet  Google Scholar 

  456. Q. Zhang, G.G. Yin, and R.H. Liu. A near-optimal selling rule for a two-time-scale market model. Multiscale Model. Simul., 4(1):172–193, 2005.

    MATH  MathSciNet  Google Scholar 

  457. Q. Zhang, G.G. Yin, and J.B. Moore. Two-time-scale approximation for Wonham filters. IEEE Trans. Inf. Theor., 53(5):1706–1715, 2007.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Stochastic Systems. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_15

Download citation

Publish with us

Policies and ethics