Skip to main content

Oscillations

  • Chapter
  • First Online:
Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

Abstract

Many multiple time scale systems are capable of generating intricate patterns. In this chapter, we are going to focus on periodic oscillations where the fast–slow structure plays a crucial role in the generating mechanism. Let us point out that we do not aim at a complete classification. The focus is on examples and prototype mechanisms. There are two main keywords associated with this area that we want to explore: mixed-mode oscillations (MMOs) and bursting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. F. Argoul, A. Arneodo, P. Richetti, and J.C. Roux. From quasi-periodicity to chaos in the Belousov–Zhabotinskii reaction. I. Experiment. J. Chem. Phys., 86(6):3325–3338, 1987.

    Google Scholar 

  2. E.F. Aboufadel. Qualitative analysis of a singularly-perturbed system of differential equations related to the van der Pol equations. Rocky Mountain J. Math., 27(2):367–385, 1997.

    MATH  MathSciNet  Google Scholar 

  3. B.D. Aguda and B.L. Clarke. Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase reaction. J. Chem. Phys., 87(6):3461–3470, 1987.

    Google Scholar 

  4. J.C. Alexander and D. Cai. On the dynamics of bursting systems. J. Math. Biol., 29:405–423, 1991.

    MATH  MathSciNet  Google Scholar 

  5. B. Amini, J.W. Clark, and C.C. Canavier. Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J. Neurophysiol., 82(5):2249–2261, 1999.

    Google Scholar 

  6. J. Argémi, H. Chagneux, C. Ducreux, and M. Gola. Qualitative study of a dynamical system for metrazol-induced paroxysmal depolarization shifts. Bull. Math. Biol., 46(5):903–922, 1984.

    MATH  MathSciNet  Google Scholar 

  7. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

    Google Scholar 

  8. C.D. Acker, N. Kopell, and J.A. White. Synchronization of strongly coupled excitatory neurons: Relating network behaviour to biophysics. J. Comput. Neurosci., 15:71–90, 2003.

    Google Scholar 

  9. B.D. Aguda and R. Larter. Periodic-chaotic sequences in a detailed mechanism of the peroxidase-oxidase reaction. J. Am. Chem. Soc., 113:7913–7916, 1991.

    Google Scholar 

  10. B.D. Aguda, R. Larter, and B.L. Clarke. Dynamic elements of mixed-mode oscillations and chaos in a peroxidase-oxidase network. J. Chem. Phys., 90(8):4168–4175, 1989.

    Google Scholar 

  11. K. Al-Naimee, F. Marino, M. Ciszak, R. Meucci, and F.T. Arecchi. Chaotic spiking and incomplete homoclinic scenarios in semiconductor lasers with optoelectric feedback. New Journal of Physics, 11:073022, 2009.

    Google Scholar 

  12. F. Argoul and J.C. Roux. Quasiperiodicity in chemistry: an experimental path in the neighbourhood of a codimension-two bifurcation. Phys. Lett. A, 108(8):426–430, 1985.

    Google Scholar 

  13. F.N. Albahadily, J. Ringland, and M. Schell. Mixed-mode oscillations in an electrochemical system. I. A Farey sequence which does not occur on a torus. J. Chem. Phys., 90:813–821, 1989.

    Google Scholar 

  14. D. Barkley. Slow manifolds and mixed-mode oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 89(9):5547–5559, 1988.

    MathSciNet  Google Scholar 

  15. Yu.N. Bibikov and V.R. Bukaty. Multifrequency oscillations of singularly perturbed systems. Differential Equat., 48(1):19–25, 2012.

    Google Scholar 

  16. R. Bertram, M.J. Butte, T. Kiemel, and A. Sherman. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol., 57(3):413–429, 1995.

    MATH  Google Scholar 

  17. J. Best, A. Borisyuk, J. Rubin, D. Terman, and M. Wechselberger. The dynamic range of bursting in a model respiratory pacemaker network. SIAM J. Appl. Dyn. Syst., 4(4):1107–1139, 2005.

    MATH  MathSciNet  Google Scholar 

  18. P.C. Bressloff and S. Coombes. Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81(10):2168–2171, 1998.

    Google Scholar 

  19. R.J. Butera, J.W. Clark, and J.H. Byrne. Dissection and reduction of a modeled bursting neuron. J. Comput. Neurosci., 3(3):199–223, 1996.

    Google Scholar 

  20. R.J. Butera, J.W. Clark, and J.H. Byrne. Transient responses of a modeled bursting neuron: analysis with equilibrium and averaged nullclines. Biol. Cybernet., 77(5):307–322, 1997.

    MATH  Google Scholar 

  21. R.J. Butera, J.W. Clark, C.C. Canavier, D.A. Baxter, and J.H. Byrne. Analysis of the effects of modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium dependent systems. J. Comput. Neurosci., 2(1):19–44, 1995.

    Google Scholar 

  22. J. Boissonade and P. DeKepper. Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system. J. Phys. Chem., 84:501–506, 1980.

    Google Scholar 

  23. B.P. Belousov. A periodic reaction and its mechanism (in Russian). Collections of Abstracts on Radiation Medicine, page 145, 1959.

    Google Scholar 

  24. R. Bertram. A computational study of the effects of serotonin on a molluscan burster neuron. Biol. Cybern., 69(3):257–267, 1993.

    MATH  MathSciNet  Google Scholar 

  25. T.V. Bronnikova, V.R. Fed’kina, W.M. Schaffer, and L.F. Olsen. Period-doubling bifurcations and chaos in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem., 99(23):9309–9312, 1995.

    Google Scholar 

  26. N. Baba and K. Krischer. Mixed-mode oscillations and cluster patterns in an electrochemical relaxation oscillator under galvanostatic control. Chaos, 18, 2008.

    Google Scholar 

  27. A. Bose, N. Kopell, and D. Terman. Almost-synchronous solutions for mutually coupled excitatory neurons. Physica D, 140(1):69–94, 2000.

    MATH  MathSciNet  Google Scholar 

  28. M. Brøns, M. Krupa, and M. Wechselberger. Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49:39–63, 2006.

    Google Scholar 

  29. R. Bertram, J. Previte, A. Herman, T.A. Kinard, and L.S. Satin. The phantom burster model for pancreatic β-cells. Biophys. J., 79(6):2880–2892, 2000.

    Google Scholar 

  30. T.S. Briggs and W.C. Rauscher. An oscillating iodine clock. J. Chem. Educ., 50:496, 1973.

    Google Scholar 

  31. S.M. Baer, J. Rinzel, and H. Carrillo. Analysis of an autonomous phase model for neuronal parabolic bursting. J. Math. Biol., 33(3):309–333, 1995.

    MATH  Google Scholar 

  32. R.J. Butera, J. Rinzel, and J.C. Smith. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82(1):382–397, 1999.

    Google Scholar 

  33. R.J. Butera, J. Rinzel, and J.C. Smith. Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol., 82(1):398–415, 1999.

    Google Scholar 

  34. R. Bertram and A. Sherman. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol., 66(5):1313–1344, 2004.

    MathSciNet  Google Scholar 

  35. R. Bertram and A. Sherman. Filtering of calcium transients by the endoplasmic reticulum in pancreatic β-cells. Biophys. J., 87(6):3775–3785, 2004.

    Google Scholar 

  36. R. Barrio and A. Shilnikov. Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh–Rose model. J. Math. Neurosci., 1(1):1–22, 2011.

    MathSciNet  Google Scholar 

  37. T.V. Bronnikova, W.M. Schaffer, and L.F. Olsen. Nonlinear dynamics of the peroxidase-oxidase reaction. I. Bistability and bursting oscillations at low enzyme concentrations. J. Phys. Chem. B, 105:310–321, 2001.

    Google Scholar 

  38. R. Bertram, L.S. Satin, M.G. Pedersen, D.S. Luciani, and A. Sherman. Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys. J., 92(5):1544–1555, 2007.

    Google Scholar 

  39. D. Bakes, L. Schreiberova, I. Schreiber, and M.J.B. Hauser. Mixed-mode oscillations in a homogeneous ph-oscillatory chemical reaction system. Chaos, 18, 2008.

    Google Scholar 

  40. R. Bertram, L. Satin, M. Zhang, P. Smolen, and A. Sherman. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J., 87(5):3074–3087, 2004.

    Google Scholar 

  41. R.J. Butera. Multirhythmic bursting. Chaos, 8(1):274–284, 1998.

    MATH  MathSciNet  Google Scholar 

  42. H.-C. Chang and M. Aluko. Multi-scale analysis of exotic dynamics in surface catalyzed reactions I: justification and preliminary model discriminations. Chem. Engineer. Sci., 39(1):37–50, 1984.

    Google Scholar 

  43. S. Coombes and P.C. Bresloff, editors. Bursting: The genesis of rhythm in the nervous system. World Scientific, 2005.

    Google Scholar 

  44. C.C. Canavier, D.A. Baxter, J.W. Clark, and J.H. Byrne. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol., 69(6):2252–2257, 1993.

    Google Scholar 

  45. C.C. Canavier, J.W. Clark, and J.H. Byrne. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J. Neurophysiol., 66(6):2107–2124, 1991.

    Google Scholar 

  46. G.S. Cymbalyuk, R.L. Calabrese, and A.L. Shilnikov. How a neuron model can demonstrate co-existence of tonic spiking and bursting. Neurocomput., 65:869–875, 2005.

    Google Scholar 

  47. P. Channell, G. Cymbalyuk, and A. Shilnikov. Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett., 98(13):134101, 2007.

    Google Scholar 

  48. M.F. Crowley and R.J. Field. Electrically coupled Belousov–Zhabotisnky oscillators: a potential chaos generator. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 147–153. Springer, 1981.

    Google Scholar 

  49. G.S. Cymbalyuk, Q. Gaudry, M. Masino, and R.L. Calabrese. Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci., 22(24):10580–10592, 2002.

    Google Scholar 

  50. T.R. Chay. Chaos in a three-variable model of an excitable cell. Physica D, 16(2):233–242, 1985.

    MATH  Google Scholar 

  51. T.R. Chay. Bursting excitable cell models by a slow Ca2+ current. J. Theor. Biol., 142(3):305–315, 1990.

    Google Scholar 

  52. T.R. Chay. Electrical bursting and intracellular Ca2+ oscillations in excitable cell models. Biol. Cybernet., 63(1):15–23, 1990.

    Google Scholar 

  53. T.R. Chay. Electrical bursting and luminal calcium oscillation in excitable cell models. Biol. Cybernet., 75(5):419–431, 1996.

    MATH  Google Scholar 

  54. Ž. Čupić, A. Ivanović-Šašić, S. Anić, B. Stanković, J. Maksimović, J. Kolar-Anić, and G. Schmitz. Tourbillion in the phase space of the Bray-Liebhafsky nonlinear oscillatory reaction and related multiple-time-scale model. MATCH Commun. Math. Comput. Chem., 69:805–830, 2013.

    MATH  Google Scholar 

  55. T.R. Chay and J. Keizer. Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys. J., 42(2):181–189, 1983.

    Google Scholar 

  56. M. Courbage, V.I. Nekorkin, and L.V. Vdovin. Chaotic oscillations in a map-based model of neural activity. Chaos, 17:043109, 2007.

    MathSciNet  Google Scholar 

  57. T.R. Chay and J. Rinzel. Bursting, beating, and chaos in an excitable membrane model. Biophys. J., 47(3):357–366, 1985.

    Google Scholar 

  58. M. Coderch, A.S. Willsky, and S.S. Sastry. Hierarchical aggregation of linear systems with multiple time scales. IEEE Trans. Aut. Contr., 28(11):1017–1030, 1983.

    MATH  MathSciNet  Google Scholar 

  59. F.M. de Aguiar, S. Rosenblatt, A. Azevedo, and S.M. Rezende. Observation of mixed-mode oscillations in spin-wave experiments. J. Appl. Phys., 85(8):5086–5087, 1999.

    Google Scholar 

  60. C. Doss-Bachelet, J.-P. Francoise, and C. Piquet. Bursting oscillations in two coupled FitzHugh–Nagumo systems. ComPlexUs, 2:101–111, 2003.

    Google Scholar 

  61. M. Desroches, J. Guckenheimer, C. Kuehn, B. Krauskopf, H. Osinga, and M. Wechselberger. Mixed-mode oscillations with multiple time scales. SIAM Rev., 54(2):211–288, 2012.

    MATH  MathSciNet  Google Scholar 

  62. S. Doi, J. Inoue, and S. Kumagai. Chaotic spiking in the Hodgkin–Huxley nerve model with slow inactivation in the sodium current. J. Integr. Neurosci., 3(2):207–225, 2004.

    Google Scholar 

  63. M. Dhamala, V.K. Jirsa, and M. Ding. Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett., 92:028101, 2004.

    Google Scholar 

  64. M. Desroches, T.J. Kaper, and M. Krupa. Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos, 23:046106, 2013.

    Google Scholar 

  65. M. Desroches, B. Krauskopf, and H.M. Osinga. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos, 18:015107, 2008.

    MathSciNet  Google Scholar 

  66. M. Desroches, B. Krauskopf, and H.M. Osinga. The geometry of mixed-mode oscillations in the Olsen model for the perioxidase-oxidase reaction. DCDS-S, 2(4):807–827, 2009.

    MATH  MathSciNet  Google Scholar 

  67. B. Doiron, C.R. Laing, A. Longtin, and L. Maler. Ghostbursting: a novel neuronal burst mechanism. J. Comput. Neurosci., 12:5–25, 2002.

    Google Scholar 

  68. C.T. Dickson, J. Magistretti, M.H. Shalisnky, E. Fransen, M.E. Hasselmo, and A. Alonso. Properties and role of I h in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol., 83:2562–2579, 2000.

    Google Scholar 

  69. C.T. Dickson, J. Magistretti, M.H. Shalisnky, B. Hamam, and A. Alonso. Oscillatory activity in entorhinal neurons and circuits: mechanisms and function. Ann. N.Y. Acad. Sci., 911:127–150, 2006.

    Google Scholar 

  70. J.R. Dunmyre, C.A. Del Negro, and J.E. Rubin. Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J. Comp. Neurosci., 31(2):305–328, 2011.

    Google Scholar 

  71. H. Degn, L.F. Olsen, and J.W. Perram. Bistability, oscillation, and chaos in an enzyme reaction. Annals of the New York Academy of Sciences, 316(1):623–637, 1979.

    Google Scholar 

  72. N. Derbel, A. Quali, M.B.A. Kamoun, and M. Poloujadoff. Two step three time scale reduction of doubly fed machine models. IEEE Trans. Energy Conv., 9(1):77–84, 1994.

    Google Scholar 

  73. J.R. Dunmyre and J.E. Rubin. Optimal intrinsic dynamics for bursting in a three-cell network. SIAM J. Appl. Dyn. Syst., 9(1):154–187, 2010.

    MATH  MathSciNet  Google Scholar 

  74. J. Drover, J. Rubin, J. Su, and B. Ermentrout. Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math., 65(1):69–92, 2004.

    MATH  MathSciNet  Google Scholar 

  75. T. Erneux, T.W. Carr, and V. Booth. Near-threshold bursting is delayed by a slow passage near a limit point. SIAM J. Appl. Math., 57(5):1406–1420, 1997.

    MATH  MathSciNet  Google Scholar 

  76. M. Eiswirth and G. Ertl. Kinetic oscillations in the catalytic CO oxidation on a Pt(110) surface. Surf. Sci., 177(1):90–100, 1986.

    Google Scholar 

  77. G.B. Ermentrout and N. Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46(2):233–253, 1986.

    MATH  MathSciNet  Google Scholar 

  78. M. Eiswirth, K. Krischer, and G. Ertl. Nonlinear dynamics in the CO-oxidation on Pt single crystal surfaces. Appl. Phys. A, 51:79–90, 1990.

    Google Scholar 

  79. A. Erisir, D. Lau, B. Rudy, and C.S. Leonard. Function of specific K + channels in sustained high-frequency firing of fast-spiking interneurons. J. Neurophysiol., 82:2476–2489, 1999.

    Google Scholar 

  80. I. Erchova and D.J. McGonigle. Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18:015115, 2008.

    MathSciNet  Google Scholar 

  81. I.R. Epstein and K. Showalter. Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem., 100:13132–13147, 1996.

    Google Scholar 

  82. G.B. Ermentrout and D.H. Terman. Mathematical Foundations of Neuroscience. Springer, 2010.

    Google Scholar 

  83. B. Ermentrout and M. Wechselberger. Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst., 8(1):253–278, 2009.

    MATH  MathSciNet  Google Scholar 

  84. V.R. Fed’kina, F.I. Ataullakhanov, and T.V. Bronnikova. Computer simulations of sustained oscillations in the peroxidase-oxidase reaction. Biophysical Chemistry, 19:259–264, 1984.

    Google Scholar 

  85. V.R. Fed’kina, F.I. Ataullakhanov, and T.V. Bronnikova. Stimulated regimens in the peroxidase-oxidase reaction. Theor. Exp. Chem., 24(2):172–178, 1988.

    Google Scholar 

  86. F. Fröhlich, M. Bazhenov, I. Timofeev, M. Steriade, and T.J. Sejnowski. Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J. Neurosci., 26(23):6153–6162, 2006.

    Google Scholar 

  87. R.J. Field and M. Burger (eds.). Oscillations and traveling waves in chemical systems. Wiley, 1985.

    Google Scholar 

  88. J.G. Freire and J.A.C. Gallas. Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh–Nagumo models of excitable systems. Phys. Lett. A, 375:1097–1103, 2011.

    MATH  Google Scholar 

  89. J.G. Freire and J.A.C. Gallas. Stern–Brocot trees in the periodicity of mixed-mode oscillations. Phys. Chem. Chem. Phys., 13:12191–12198, 2011.

    Google Scholar 

  90. R.J. Field and R.M. Noyes. Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys., 60:1877–1884, 1974.

    Google Scholar 

  91. J.-P. Francoise and C. Piquet. Hysteresis dynamics, bursting oscillations and evolution to chaotic regimes. Acta Biotheoretica, 53(4):381–392, 2005.

    Google Scholar 

  92. S.D. Furrow. Chemical oscillators based on iodate ion and hydrogen peroxide. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 171–192. Wiley-Interscience, 1985.

    Google Scholar 

  93. B.S. Gutkin and G.B. Ermentrout. Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput., 10(5):1047–1065, 1998.

    Google Scholar 

  94. W. Geiseler and H.H. Föllner. Three steady state situation in an open chemical reaction system. I. Bipophys. Chem., 6(1):107–115, 1977.

    Google Scholar 

  95. L. Györgi and R.J. Field. Simple models of deterministic chaos in the Belousov–Zhabotinsky reaction. J. Phys. Chem., 95:6594–6602, 1991.

    Google Scholar 

  96. P. Gray, J.F. Griffiths, S.M. Hasko, and P.-G. Lignola. Oscillatory ignitions and cool flames accompanying the non-isothermal oxidation of acetaldehyde in a well stirred, flow reactor. Proc. R. Soc. Lond., 374(1758):313–339, 1981.

    Google Scholar 

  97. J. Guckenheimer, S. Gueron, and R. Harris-Warrick. Mapping the dynamics of a bursting neuron. Phil. Trans. Roy. Soc. B, 341:345–359, 1993.

    Google Scholar 

  98. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, and G. Huyet. Excitability and self-pulsations near homoclinic bifurcations in semiconductor lasers. Phys. Rev. Lett., 98:153903, 2007.

    Google Scholar 

  99. K.R. Graziani, J.L. Hudson, and R.A. Schmitz. The Belousov–Zhabotinskii reaction in a continuous flow reactor. The Chemical Engineering Journal, 12(1):9–21, 1976.

    Google Scholar 

  100. J. Guckenheimer, R. Harris-Warrick, J. Peck, and A.R. Willms. Bifurcation, bursting, and spike frequency adaptation. J. Comp. Neuosci., 4:257–277, 1997.

    MATH  Google Scholar 

  101. M. Golubitsky, K. Josic, and T.J. Kaper. An unfolding theory approach to bursting in fast–slow systems. In H.W. Broer, B. Krauskopf, and G. Vegter, editors, Global Analysis of Dynamical Systems: Festschrift dedicated to Floris Takens on the occasion of his 60th birthday, pages 277–308. Institute of Physics Publ., 2001.

    Google Scholar 

  102. J. Guckenheimer and C. Kuehn. Computing slow manifolds of saddle-type. SIAM J. Appl. Dyn. Syst., 8(3):854–879, 2009.

    MATH  MathSciNet  Google Scholar 

  103. J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: The singular limit. Discr. Cont. Dyn. Syst. S, 2(4):851–872, 2009.

    MATH  MathSciNet  Google Scholar 

  104. J. Guckenheimer and C. Kuehn. Homoclinic orbits of the FitzHugh–Nagumo equation: Bifurcations in the full system. SIAM J. Appl. Dyn. Syst., 9:138–153, 2010.

    MATH  MathSciNet  Google Scholar 

  105. J.M. Gonzalez-Miranda. Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bif. Chaos, 17(9):3071–3083, 2007.

    MATH  MathSciNet  Google Scholar 

  106. J.M. Gonzalez-Miranda. Nonlinear dynamics of the membrane potential of a bursting pacemaker cell. Chaos, 22:013123, 2012.

    Google Scholar 

  107. J. Guckenheimer and P. Meerkamp. Bifurcation analysis of singular Hopf bifurcation in \(\mathbb{R}^{3}\). SIAM J. Appl. Dyn. Syst., 11(4):1325–1359, 2012.

    MATH  MathSciNet  Google Scholar 

  108. P. Gaspard and G. Nicolis. What can we learn from homoclinic orbits in chaotic dynamics? J. Stat. Phys., 31(3):499–518, 1983.

    MATH  MathSciNet  Google Scholar 

  109. R.E. Griffiths and M. Pernarowski. Return map characterizations for a model of bursting with two slow variables. SIAM J. Appl. Math., 66(6):1917–1948, 2006.

    MATH  MathSciNet  Google Scholar 

  110. L. Györgi, S. Rempe, and R.J. Field. A novel model for the simulation of chaos in low-flow-rate CSTR experiments with the Belousov–Zhabotinskii reaction: a chemical mechanism for two-frequency oscillations. J. Phys. Chem., 95:3159–3165, 1991.

    Google Scholar 

  111. L.T. Grujic. Singular perturbations and large-scale systems. Int. J. Contr., 29(1):159–169, 1979.

    MATH  MathSciNet  Google Scholar 

  112. P. Goel and A. Sherman. The geometry of bursting in the dual oscillator model of pancreatic β-cells. SIAM J. Appl. Dyn. Syst., 8(4):1664–1693, 2009.

    MATH  MathSciNet  Google Scholar 

  113. J. Guckenheimer and C. Scheper. A geometric model for mixed-mode oscillations in a chemical system. SIAM J. Appl. Dyn. Sys., 10(1):92–128, 2011.

    MATH  MathSciNet  Google Scholar 

  114. J. Guckenheimer and C. Scheper. Multiple time scale analysis of a model Belousov–Zhabotinskii reaction. SIAM J. Appl. Dyn. Sys., 12(4):1968–1996, 2013.

    MATH  MathSciNet  Google Scholar 

  115. D. Golomb, A. Shedmi, R. Curtu, and G.B. Ermentrout. Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J. Neurophysiol., 95(2):1049–1067, 2006.

    Google Scholar 

  116. A. Goryachev, P. Strizhak, and R. Kapral. Slow manifold structure and the emergence of mixed-mode oscillations. J. Chem. Phys., 107(18):2881–2889, 1997.

    Google Scholar 

  117. T. Geest, C.G. Steinmetz, R. Larter, and L.F. Olsen. Period-doubling bifurcations and chaos in an enzyme reaction. J. Phys. Chem., 96:5678–5680, 1992.

    Google Scholar 

  118. L. Györgi, T. Turányi, and R.J. Field. Mechanistic details of the oscillatory Belousov–Zhabotinskii reaction. J. Phys. Chem., 94:7162–7170, 1990.

    Google Scholar 

  119. J. Guckenheimer, J.H. Tien, and A.R. Willms. Bifurcations in the fast dynamics of neurons: implications for bursting. In Bursting, The Genesis of Rhythm in the Nervous System, pages 89–122. World Sci. Publ., 2005.

    Google Scholar 

  120. J. Guckenheimer. Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst., 7(4):1355–1377, 2008.

    MATH  MathSciNet  Google Scholar 

  121. P. Gaspard and X.-J. Wang. Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems. Journal of Statistical Physics, 48:151–199, 1987.

    MathSciNet  Google Scholar 

  122. Y. Gutfreund, Y. Yarom, and I. Segev. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J. Physiol., 483:621–640, 1995.

    Google Scholar 

  123. D. Golomb, C. Yue, and Y. Yaari. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J. Neurophysiol., 96(4):1912–1926, 2006.

    Google Scholar 

  124. T. Hayashi. Mixed-mode oscillations and chaos in a glow discharge. Phys. Rev. Lett., 84(15):3334–3337, 2000.

    Google Scholar 

  125. J.L. Hudson, M. Hart, and D. Marinko. An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 71(4):1601–1606, 1979.

    Google Scholar 

  126. S.K. Han, C. Kurrer, and Y. Kuramoto. Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett., 75(17):3190–3193, 1995.

    Google Scholar 

  127. A.A. Hill, J. Lu, M. Masino, O.H. Olsen, and R.L. Calabrese. A model of a segmental oscillator in the leech heartbeat neuronal network. J. Comput. Neurosci., 10(3):281–302, 2001.

    Google Scholar 

  128. S.P. Hastings and J.D. Murray. The existence of oscillatory solutions in the Field–Noyes model for the Belousov–Zhabotinskii reaction. SIAM J. Appl. Math., 28(3):678–688, 1975.

    MathSciNet  Google Scholar 

  129. J.L. Hudson and J.C. Mankin. Chaos in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 74: 6171–6177, 1981.

    Google Scholar 

  130. J.L. Hudson, J. Mankin, J. McCullough, and P. Lamba. Experiment on chaos in a continuous stirred reactor. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 44–48. Springer, 1981.

    Google Scholar 

  131. B. Hutcheon, R.M. Miura, and E. Puil. Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol., 76(2):683–697, 1996.

    Google Scholar 

  132. J. Honerkamp, G. Mutschler, and R. Seitz. Coupling of a slow and a fast oscillator can generate bursting. Bull. Math. Biol., 47(1):1–21, 1985.

    MATH  MathSciNet  Google Scholar 

  133. M.J.B. Hauser and L.F. Olsen. Mixed-mode oscillations and homoclinic chaos in an enzyme reaction. J. Chem. Soc. Faraday Trans., 92(16):2857–2863, 1996.

    Google Scholar 

  134. M.J.B. Hauser, L.F. Olsen, T.V. Bronnikova, and W.M. Schaffer. Routes to chaos in the peroxdiase–oxidase reaction: period-doubling and period-adding. J. Phys. Chem. B, 101:5075–5083, 1997.

    Google Scholar 

  135. J.L. Hindmarsh and R.M. Rose. A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc. London B, 221(1222):87–102, 1984.

    Google Scholar 

  136. J.L. Hindmarsh and R.M. Rose. A model for rebound bursting in mammalian neurons. Proc. Roy. Soc. London B, 346(1316):129–150, 1994.

    Google Scholar 

  137. T. Hauck and F.W. Schneider. Mixed-mode and quasiperiodic oscillations in the peroxidase-oxidase reaction. J. Phys. Chem., 97:391–397, 1993.

    Google Scholar 

  138. T. Hauck and F.W. Schneider. Chaos in a Farey sequence through period doubling in the peroxidase-oxidase reaction. J. Phys. Chem., 98:2072–2077, 1994.

    Google Scholar 

  139. Y.-F. Hung, I. Schreiber, and J. Ross. New reaction mechanism for the oscillatory peroxidase-oxidase reaction and comparison with experiments. J. Phys. Chem., 99:1980–1987, 1995.

    Google Scholar 

  140. R.M. Harris-Warrick and R.E. Flamm. Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci., 7(7):2113–2128, 1987.

    Google Scholar 

  141. E. Izhikevich and F. Hoppensteadt. Classification of bursting mappings. Int. J. Bif. Chaos, 14(11):3847–3854, 2004.

    MATH  MathSciNet  Google Scholar 

  142. P. Ibison and K. Scott. Detailed bifurcation structure and new mixed-mode oscillations of the Belousov–Zhabotinskii reaction in a stirred flow reactor. J. Chem. Soc. Faraday Trans., 86(22): 3695–3700, 1990.

    Google Scholar 

  143. E. Izhikevich. Neural excitability, spiking, and bursting. Int. J. Bif. Chaos, 10:1171–1266, 2000.

    MATH  MathSciNet  Google Scholar 

  144. E. Izhikevich. Subcritical elliptic bursting of Bautin type. SIAM J. Appl. Math., 60(2):503–535, 2000.

    MATH  MathSciNet  Google Scholar 

  145. E. Izhikevich. Synchronization of elliptic bursters. SIAM Rev., 43(2):315–344, 2001.

    MATH  MathSciNet  Google Scholar 

  146. E. Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw., 15(5): 1063–1070, 2004.

    Google Scholar 

  147. E. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007.

    Google Scholar 

  148. H. Jahnsen and S. Karnup. A spectral analysis of the integration of artificial synaptic potentials in mammalian central neurons. Brain Res., 666:9–20, 1994.

    Google Scholar 

  149. J. Jalics, M. Krupa, and H.G. Rotstein. Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dynamical Systems, 25(4):445–482, 2010.

    MATH  MathSciNet  Google Scholar 

  150. M. Krupa, B. Ambrosio, and M.A. Aziz-Alaoui. Weakly coupled two slow–two fast systems, folded node and mixed mode oscillations. arXiv:1302.1800v1, pages 1–19, 2013.

    Google Scholar 

  151. J.M. Kowalski, G.L. Albert, B.K. Rhoades, and G.W. Gross. Neuronal networks with spontaneous, correlated bursting activity: theory and simulations. Neural Networks, 5(5):805–822, 1992.

    Google Scholar 

  152. P. De Kepper and J. Boissonade. From bistability to sustained oscillations in homogeneous chemical systems in flow reactor mode. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 223–256. Wiley-Interscience, 1985.

    Google Scholar 

  153. T.A. Kinard, G. DeVries, A. Sherman and L.S. Satin. Modulation of the bursting properties of single mouse pancreatic-β-cells by artificial conductances. Biophys. J., 78(3):1423–1435, 1999.

    Google Scholar 

  154. P. De Kepper and I.R. Epstein. A mechanistic study of oscillations and bistability in the Briggs–Rauscher reaction. J. Am. Chem. Soc., 104:49–55, 1982.

    Google Scholar 

  155. N. Kopell and G.B. Ermentrout. Subcellular oscillations and bursting. Math. Biosci., 78(2):265–291, 1986.

    MATH  MathSciNet  Google Scholar 

  156. K. Krischer, M. Eiswirth, and G. Ertl. Oscillatory CO oxidation on Pt(110): modeling of temporal self-organization. J. Chem. Phys., 96(12):9161–9172, 1992.

    Google Scholar 

  157. M.T.M. Koper and P. Gaspard. Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator. J. Chem. Phys., 95:4945–4947, 1991.

    Google Scholar 

  158. M.T.M. Koper and P. Gaspard. The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J. Chem. Phys., 96(10):7797–7813, 1992.

    Google Scholar 

  159. M.T.M. Koper, P. Gaspard, and J.H. Sluyters. Mixed-mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator. J. Chem. Phys., 97(11):8250–8260, 1992.

    Google Scholar 

  160. H.K. Khalil. Asymptotic stability of nonlinear multiparameter singularly perturbed systems. Automatica, 17(6):797–804, 1981.

    MATH  MathSciNet  Google Scholar 

  161. V.O. Khavrus, H.Farkas, and P.E. Strizhak. Conditions for mixed-mode oscillations and deterministic chaos in nonlinear chemical systems. Theoretical and Experimental Chemistry, 38(5):301–307, 2002.

    Google Scholar 

  162. H.K. Khalil and P.V. Kokotovic. Control of linear systems with multiparameter singular perturbations. Automatica, 15(2): 197–207, 1979.

    MATH  MathSciNet  Google Scholar 

  163. H.K. Khalil and P.V. Kokotovic. D-stability and multi-parameter singular perturbation. SIAM J. Contr. Optim., 17(1): 56–65, 1979.

    MATH  MathSciNet  Google Scholar 

  164. A.L. Kawczynski, V.O. Khavrus, and P.E. Strizhak. Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system. Chaos, 10(2):299–310, 2000.

    MATH  MathSciNet  Google Scholar 

  165. K. Krischer, M. Luebke, M. Eiswirth, W. Wolf, J.L. Hudson, and G. Ertl. A hierarchy of transitions to mixed mode oscillations in an electrochemical system. Physica D, 62:123–133, 1993.

    MATH  Google Scholar 

  166. K.-R. Kim, D.J. Lee, and K.J. Shin. A simplified model for the Briggs–Rauscher reaction mechanism. J. Chem. Phys., 117(6):2710–2717, 2002.

    Google Scholar 

  167. K. Kovacs, M. Leda, V.K. Vanag, and I.R. Epstein. Small-amplitude and mixed-mode oscillations in the Bromate–Sulfite–Ferrocyanide–Aluminium(III) system. J. Phys. Chem., 113: 146–156, 2009.

    Google Scholar 

  168. M.T.M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous van der Pol–Duffing model with a cross-shaped phase diagram. Physica D, 80:72–94, 1995.

    MATH  MathSciNet  Google Scholar 

  169. M. Krupa, N. Popovic, and N. Kopell. Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst., 7(2):361–420, 2008.

    MATH  MathSciNet  Google Scholar 

  170. M. Krupa, N. Popovic, N. Kopell, and H.G. Rotstein. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos, 18:015106, 2008.

    MathSciNet  Google Scholar 

  171. M.T.M. Koper and J.H. Sluyters. Electrochemical oscillators: an experimental study of the indium/thiocyanate oscillator. J. Electroanal. Chem., 303:65–72, 1991.

    Google Scholar 

  172. M.T.M. Koper and J.H. Sluyters. Electrochemical oscillators: their description through a mathematical model. J. Electroanal. Chem., 303:73–94, 1991.

    Google Scholar 

  173. A.L. Kawczynski and P.E. Strizhak. Period adding and broken Farey tree sequences of bifurcations for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system. J. Chem. Phys., 112(14):6122–6130, 2000.

    Google Scholar 

  174. I. Kosiuk and P. Szmolyan. Scaling in singular perturbation problems: blowing-up a relaxation oscillator. SIAM J. Appl. Dyn. Syst., 10(4):1307–1343, 2011.

    MATH  MathSciNet  Google Scholar 

  175. K.-R. Kim, K.J. Shin, and D.J. Lee. Complex oscillations in a simple model for the Briggs–Rauscher reaction. J. Chem. Phys., 121(6):2664–2672, 2004.

    MathSciNet  Google Scholar 

  176. B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum. Excitability and self-pulsations near homoclinic bifurcations in semiconductor lasers. Optics Communications, 215:367–379, 2003.

    Google Scholar 

  177. C. Kuehn. On decomposing mixed-mode oscillations and their return maps. Chaos, 21(3):033107, 2011.

    Google Scholar 

  178. Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, NY, 3rd edition, 2004.

    MATH  Google Scholar 

  179. M. Krupa, A. Vidal, M. Desroches, and F. Clément. Mixed-mode oscillations in a multiple time scale phantom bursting system. SIAM J. Appl. Dyn. Syst., 11(4):1458–1498, 2012.

    MATH  MathSciNet  Google Scholar 

  180. B. Krauskopf and S.M. Wieczorek. Accumulating regions of winding periodic orbits in optically driven lasers. Physica D, 173:97–113, 2002.

    MATH  MathSciNet  Google Scholar 

  181. T. Kispersky, J.A. White, and H.G. Rotstein. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells. PLoS ONE, 5(11):e13697, 2010.

    Google Scholar 

  182. R. Larter, C.L. Bush, T.R. Lonis, and B.D. Aguda. Multiple steady states, complex oscillations, and the devil’s staircase in the peroxidase-oxidase reaction. J. Chem. Phys., 87(10): 5765–5771, 1987.

    Google Scholar 

  183. Y.X. Li, R. Bertram, and J. Rinzel. Modeling N-methyl-d-aspartate-induced bursting in dopamine neurons. Neurosci., 71(2):397–410, 1996.

    Google Scholar 

  184. D. Linaro, A. Champneys, M. Desroches, and M. Storace. Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster. SIAM J. Appl. Dyn. Syst., 11(3):939–962, 2012.

    MATH  MathSciNet  Google Scholar 

  185. R.R. Llinas, A.A. Grace, and Y. Yarom. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz frequency range. Proc. Natl. Acad. Sci., 88(3):897–901, 1991.

    Google Scholar 

  186. R. Larter and S. Hemkin. Further refinements of the peroxidase-oxidase oscillator mechanism: Mixed-mode oscillations and chaos. J. Phys. Chem., 100:18924–18930, 1996.

    Google Scholar 

  187. T. LoFaro, N. Kopell, E. Marder, and S.L. Hooper. Subharmonic coordination in networks of neurons with slow conductances. Neural Comput., 6(1):69–84, 1994.

    Google Scholar 

  188. T. Linß and H.-G. Roos. Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters. J. Math. Anal. Appl., 289(2):355–366, 2004.

    MATH  MathSciNet  Google Scholar 

  189. R. Llinas and M. Sugimori. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol., 305(1):197–213, 1980.

    Google Scholar 

  190. R. Larter and C.G. Steinmetz. Chaos via mixed-mode oscillations. Phil. Trans. R. Soc. Lond. A, 337: 291–298, 1991.

    MATH  Google Scholar 

  191. R. Larter, C.G. Steinmetz, and B.D. Aguda. Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction. J. Chem. Phys., 89(10):6506–6514, 1988.

    Google Scholar 

  192. G. Lajoie and E. Shea-Brown. Shared inputs, entrainment, and desynchrony in elliptic bursters: from slow passage to discontinuous circle maps. SIAM J. Appl. Dyn. Syst., 10(4):1232–1271, 2011.

    MATH  MathSciNet  Google Scholar 

  193. E. Lee and D. Terman. Uniqueness and stability of periodic bursting solutions. J. Differential Equat., 158:48–78, 1999.

    MATH  MathSciNet  Google Scholar 

  194. D. Lindberg, J.S. Turner, and D. Barkley. Chaos in the Showalter–Noyes–Bar-Eli model of the Belousov–Zhabotinskii reaction. J. Chem. Phys., 92(5):3238–3239, 1990.

    Google Scholar 

  195. B. Láňová and J. Vřešt’ál. Study of the Bray–Liebhafsky reaction by on-line mass spectrometry. J. Phys. Chem. A, 106: 1228–1232, 2002.

    Google Scholar 

  196. J. Llibre and C. Valls. Darboux integrability of polynomial differential systems in \(\mathbb{R}^{3}\). Bull. Belg. Math. Soc., 20(4):603–619, 2013.

    MATH  MathSciNet  Google Scholar 

  197. J. Maselko. Experimental studies of complicated oscillations. The system Mn2+-malonic acid-KBrO3-H2SO4. Chem. Phys., 51(3):473–480, 1980.

    Google Scholar 

  198. G.S. Medvedev and J.E. Cisternas. Multimodal regimes in a compartmental model of the dopamine neuron. Phys. D, 194(3–4):333–356, 2004.

    MATH  MathSciNet  Google Scholar 

  199. F. Marino, M. Ciszak, S.F. Abdalah, K. Al-Naimee, R. Meucci, and F.T. Arecchi. Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback. Phys. Rev. E, 84:047201, 2011.

    Google Scholar 

  200. M. Mikikian, M. Cavarroc, L. Couedel, Y. Tessier, and L. Boufendi. Mixed-mode oscillations in complex plasma instabilities. Physical Review Letters, 100(22), 2008.

    Google Scholar 

  201. C. Morris and H. Lecar. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 35(1): 193–213, 1981.

    Google Scholar 

  202. E. Manica, G.S. Medvedev, and J.E. Rubin. First return maps for the dynamics of synaptically coupled conditional bursters. Biol. Cybernet., 103:87–104, 2010.

    MATH  MathSciNet  Google Scholar 

  203. J. Maselko and H.L. Swinney. A complex transition sequence in the Belousov–Zhabotinskii reaction. Physica Scripta, T9:35–39, 1985.

    Google Scholar 

  204. J. Maselko and H.L. Swinney. A Farey triangle in the Belousov–Zhabotinskii reaction. Phys. Lett. A, 119(8):403–406, 1986.

    MathSciNet  Google Scholar 

  205. J. Maselko and H.L. Swinney. Complex periodic oscillation and Farey arithmetic in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 85:6430–6441, 1986.

    MathSciNet  Google Scholar 

  206. A. Milik and P. Szmolyan. Multiple time scales and canards in a chemical oscillator. In C.K.R.T. Jones, editor, Multiple Time Scale Dynamical Systems, volume 122, pages 117–140. Springer, 2001.

    Google Scholar 

  207. N. Madden and M. Stynes. A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems. IMA J. Numer. Anal., 23(4):627–644, 2003.

    MATH  MathSciNet  Google Scholar 

  208. T. Malashchenko, A. Shilnikov, and G. Cymbalyuk. Bistability of bursting and silence regimes in a model of a leech heart interneuron. Phys. Rev. E, 84:041910, 2011.

    Google Scholar 

  209. A. Milik, P. Szmolyan, H. Loeffelmann, and E. Groeller. Geometry of mixed-mode oscillations in the 3-d autocatalator. Int. J. Bif. Chaos, 8(3):505–519, 1998.

    MATH  Google Scholar 

  210. W. Marszalek and Z. Trzaska. Mixed-mode oscillations in a modified Chua’s circuit. Circuits Syst. Signal Process., 29(6):1075–1087, 2010.

    MATH  MathSciNet  Google Scholar 

  211. G. Medvedev and S. Zhuravytska. Shaping bursting by electrical coupling and noise. Biol. Cybern., 106(2):67–88, 2012.

    MATH  MathSciNet  Google Scholar 

  212. C.S. Nunemaker, R. Bertram, A. Sherman, K. Tsaneva-Atanasova, C.R. Daniel, and L.S. Satin. Glucose modulates \([\text{Ca}^{2+}]_{i}\) oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys. J., 91(6):2082–2096, 2006.

    Google Scholar 

  213. R.M. Noyes and S.D. Furrow. The oscillatory Briggs–Rauscher reaction. 3. A skeleton mechanism for oscillations. J. Am. Chem. Soc., 104:45–48, 1982.

    Google Scholar 

  214. C.A. Del Negro, C.F. Hsiao, S.H. Chandler, and A. Garfinkel. Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophysical J., 75:174–182, 1998.

    Google Scholar 

  215. J. Nowacki,, S.H. Mazlan, H.M. Osinga, and K.T. Tsaneva-Atanasova. The role of large-conductance Calcium-activated K + (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D, 239(9):485–493, 2010.

    MATH  MathSciNet  Google Scholar 

  216. J. Nowacki, H.M. Osinga, J.T. Brown, A.D. Randall, and K.T. Tsaneva-Atanasova. A unified model of CA1/3 pyramidal cells: an investigation into excitability. Progress in Biophysics and Molecular Biology, 105:34–48, 2011.

    Google Scholar 

  217. J. Nowacki, H.M. Osinga, and K.T. Tsaneva-Atanasova. Dynamical systems analysis of spike-adding mechanisms in transient bursts. J. Math. Neurosci., 2:7, 2012.

    MathSciNet  Google Scholar 

  218. G. Neher, L. Pohlmann, and H. Tributsch. Mixed-mode oscillations self-similarity and time-transient chaotic behaviour in the (photo-) electrochemical system p − CuInSe 2∕H 2 O 2. J. Phys. Chem., 99:17763–17771, 1995.

    Google Scholar 

  219. C.A. Del Negro, C.G. Wilson, R.J. Butera, H. Rigatto, and J.C. Smith. Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. Biophysical J., 82:206–214, 2002.

    Google Scholar 

  220. L.F. Olsen and H. Degn. Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochim. Biophys. Acta, 523(2):321–334, 1978.

    Google Scholar 

  221. M. Orban and I.R. Epstein. Chemical oscillators in group VIA: The Cu(II)-catalyzed reaction between hydrogen peroxide and thiosulfate ion. J. Am. Chem. Soc., 109:101–106, 1987.

    Google Scholar 

  222. N. Okazaki and I. Hanazaki. Photo-induced chaos in the Briggs–Rauscher reaction. J. Chem. Phys., 109(2):637–642, 1998.

    Google Scholar 

  223. M. Orban, K. Kurin-Csorgei, G. Rabai, and I.R. Epstein. Mechanistic studies of oscillatory copper(II) catalyzed oxidation reactions of sulfour compounds. Chem. Eng. Sci., 55:267–273, 2000.

    Google Scholar 

  224. R.E. O’Malley. On initial value problems for nonlinear systems of differential equations with two small parameters. Arch. Rat. Mech. Anal., 40(3):209–222, 1971.

    MATH  MathSciNet  Google Scholar 

  225. H.M. Osinga, A. Sherman, and K. Tsaneva-Atanasova. Cross-currents between biology and mathematics: the codimension of pseudo-plateau bursting. Discr. Cont. Dyn. Syst. A, 32:2853–2877, 2012.

    MATH  MathSciNet  Google Scholar 

  226. H.M. Osinga and K.T. Tsaneva-Atanasova. Dynamics of plateau bursting in dependence on the location of its equilibrium. J. Neuroendocrinology, 22(12):1301–1314, 2010.

    Google Scholar 

  227. D.L. Olson, E.P. Williksen, and A. Scheeline. An experimentally based model of the Peroxidase-NADH biochemical oscillator: An enzyme-mediated chemical switch. J. Am. Chem. Soc., 117:2–15, 1995.

    Google Scholar 

  228. C.L. Pando. Recurrent synchronism in the internal dynamics of CO2 lasers. Phys. Lett. A, 210(6): 391–401, 1996.

    Google Scholar 

  229. Y. Park, Y. Do, and J.M. Lopez. Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons. J. Comput. Neurosci., 34(2):345–366, 2013.

    MATH  MathSciNet  Google Scholar 

  230. M. Pernarowski. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting. SIAM J. Appl. Math., 54(3):814–832, 1994.

    MATH  MathSciNet  Google Scholar 

  231. M. Pernarowski. Fast and slow subsystems for a continuum model of bursting activity in the pancreatic islet. SIAM J. Appl. Math., 58(5):1667–1687, 1998.

    MATH  MathSciNet  Google Scholar 

  232. M. Pernarowski. Fast subsystem bifurcations in strongly coupled heterogeneous collections of excitable cells. Bull. Math. Biol., 62:101–120, 2000.

    Google Scholar 

  233. M. Pernarowski. Controllability of excitable systems. Bull. Math. Biol., 63:167–184, 2001.

    Google Scholar 

  234. B. Peng, V. Gaspar, and K. Showalter. False bifurcations in chemical systems: canards. Phil. Trans. R. Soc. Lond. A, 337:275–289, 1991.

    MATH  Google Scholar 

  235. A.S. Pikovsky. A dynamical model for periodic and chaotic oscillations in the Belousov–Zhabotinsky reaction. Phys. Rev. A, 85(1):13–16, 1981.

    Google Scholar 

  236. R.E. Plant. Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biol., 11:15–32, 1981.

    MATH  MathSciNet  Google Scholar 

  237. E. Peacock-Lopez, D.B. Radov, and C.S. Flesner. Mixed-mode oscillations in a self-replicating dimerization mechanism. Biophysical Chemistry, 65:171–178, 1997.

    Google Scholar 

  238. M. Pernarowski, R.M. Miura, and J. Kevorkian. The Sherman-Rinzel-Keizer model for bursting electrical activity in the pancreatic β-cell. In Differential Equations Models in Biology, Epidemiology and Ecology, pages 34–53. Springer, 1991.

    Google Scholar 

  239. M. Pernarowski, R.M. Miura, and J. Kevorkian. Perturbation techniques for models of bursting electrical activity in pancreatic β-cells. SIAM J. Appl. Math., 52(6):1627–1650, 1992.

    MATH  MathSciNet  Google Scholar 

  240. L. Pohlmann, G. Neher, and H. Tributsch. A model for oscillating hydrogen liberation at CuInSe2 in the presence of H2O2. J. Phys. Chem., 98:11007–11010, 1994.

    Google Scholar 

  241. A.S. Pikovsky and M.I. Rabinovich. Stochastic oscillations in dissipative systems. Physica D, 2(1): 8–24, 1981.

    MATH  MathSciNet  Google Scholar 

  242. P.F. Pinsky and J. Rinzel. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci., 1(1):39–60, 1994.

    Google Scholar 

  243. Y. Pomeau, J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal. Intermittent behaviour in the Belousov–Zhabotinsky reaction. Journal de Physique Lettres, 42:271–273, 1981.

    Google Scholar 

  244. V. Petrov, S.K. Scott, and K. Showalter. Mixed-mode oscillations in chemical systems. J. Chem. Phys., 97(9):6191–6198, 1992.

    Google Scholar 

  245. F. Plenge, H. Varela, and K. Krischer. Asymmetric target patterns in one-dimensional oscillatory media with genuine nonlocal coupling. Phys. Rev. Lett., 94, 2005.

    Google Scholar 

  246. S. Rajesh and G. Ananthakrishna. Effect of slow manifold structure on relaxation oscillations and one-dimensional map in a model for plastic instability. Physica A, 270:182–189, 2000.

    Google Scholar 

  247. S. Rajesh and G. Ananthakrishna. Incomplete approach to homoclinicity in a model with bent-slow manifold geometry. Physica D, 140:193–212, 2000.

    MATH  Google Scholar 

  248. R. Raghavan and G. Ananthakrishna. Long tailed maps as a representation of mixed mode oscillatory systems. Physica D, 211:74–87, 2005.

    MATH  MathSciNet  Google Scholar 

  249. J. Rinzel and B. Ermentrout. Analysis of neural excitability and oscillations. In C. Koch and I. Segev, editors, Methods of Neural Modeling: From Synapses to Networks, pages 135–169. MIT Press, 1989.

    Google Scholar 

  250. C. Roussel, T. Erneux, S.N. Schiffmann, and D. Gall. Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium, 39(5):455–466, 2006.

    Google Scholar 

  251. J. Rinzel and P. Frankel. Activity patterns of a slow synapse network predicted by explicitly averaging spike dynamics. Neural Comput., 4(4):534–545, 1992.

    Google Scholar 

  252. R.M. Rose and J.L. Hindmarsh. A model of a thalamic neuron. Proc. Roy. Soc. London B, 225:161–193, 1985.

    Google Scholar 

  253. R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc. Roy. Soc. London B, 237:267–288, 1989.

    Google Scholar 

  254. R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron II. The stability and state diagrams. Proc. Roy. Soc. London B, 237:289–312, 1989.

    Google Scholar 

  255. R.M. Rose and J.L. Hindmarsh. The assembly of ionic currents in a thalamic neuron III. The seven-dimensional model. Proc. Roy. Soc. London B, 237:313–334, 1989.

    Google Scholar 

  256. J.E. Rubin, J. Hayes, J. Mendenhall, and C. Del Negro. Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc. Natl. Acad. Sci., 106(8):2939–2944, 2009.

    Google Scholar 

  257. J. Rinzel. Bursting oscillations in an excitable membrane model. In Ordinary and Partial Differential Equations, pages 304–316. Springer, 1985.

    Google Scholar 

  258. J. Rinzel. A formal classification of bursting mechanisms in excitable systems. Proc. Int. Congress Math., Berkeley, pages 1578–1593, 1986.

    Google Scholar 

  259. J. Rinzel. A formal classification of bursting mechanisms in excitable systems. In Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, pages 267–281. Springer, 1987.

    Google Scholar 

  260. R.J. Field, E. Körös and R.M. Noyes. Oscillations in chemical systems II. Thorough analysis of temporal oscillations in the Ce −BrO3-malonic acid system. J. Am. Chem. Soc., 94:8649–8664, 1972.

    Google Scholar 

  261. M. Rachwalska and A.L. Kawczynski. New types of mixed-mode oscillations in the Belousov–Zhabotinsky reaction in continuously stirred tank reactors. J. Chem. Phys. A, 103:3455–3457, 1999.

    Google Scholar 

  262. M. Rachwalska and A.L. Kawczynski. Period-adding bifurcations in mixed-mode oscillations in the Belousov–Zhabotinsky reaction at various residence times in a CTSR. J. Chem. Phys. A, 105: 7885–7888, 2001.

    Google Scholar 

  263. J. Rinzel and Y.S. Lee. On different mechanisms for membrane potential bursting. In Nonlinear Oscillations in Biology and Chemistry, pages 19–33. Springer, 1986.

    Google Scholar 

  264. J. Rinzel and Y.S. Lee. Dissection of a model for neuronal parabolic bursting. J. Math. Biol., 25(6):653–675, 1987.

    MATH  MathSciNet  Google Scholar 

  265. H.G. Rotstein, T. Oppermann, J.A. White, and N. Kopell. The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J. Comput. Neurosci., 21:271–292, 2006.

    MathSciNet  Google Scholar 

  266. M.E. Rush and J. Rinzel. Analysis of bursting in a thalamic neuron model. Biol. Cybern., 71(4): 281–291, 1994.

    MATH  Google Scholar 

  267. M.E. Rush and J. Rinzel. The potassium A-current, low firing rates and rebound excitation in Hodgkin–Huxley models. Bull. Math. Biol., 57(6):899–929, 1995.

    MATH  Google Scholar 

  268. P. Richetti, J.C. Roux, F. Argoul, and A. Arneodo. From quasiperiodicity to chaos in the Belousov–Zhabotinskii reaction. II. Modeling and theory. J. Chem. Phys., 86(6):3339–3355, 1987.

    Google Scholar 

  269. J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal. Experimental observations of complex dynamical behaviour during a chemical reaction. Physica D, 2(2):395–403, 1981.

    MathSciNet  Google Scholar 

  270. J.-C. Roux and H.L. Swinney. Topology of chaos in a chemical reaction. In C. Vidal and A. Pacault, editors, Nonlinear Phenomena in Chemical Dynamics, pages 38–43. Springer, 1981.

    Google Scholar 

  271. J. Rinzel and I.B. Schwartz. One variable map prediction of the Belousov–Zhabotinskii mixed mode oscillations. J. Chem. Phys., 80(11):5610–5615, 1984.

    Google Scholar 

  272. J.-C. Roux, R.H. Simoyi, and H.L. Swinney. Observation of a strange attractor. Physica D, 8(1): 257–266, 1983.

    MATH  MathSciNet  Google Scholar 

  273. J. Rinzel and W.C. Troy. Bursting in a simplified Oregonator flow system model. J. Chem. Phys., 76(4):1775–1789, 1982.

    MathSciNet  Google Scholar 

  274. H.-G. Roos and Z. Uzelac. The SDFEM for a convection-diffusion problem with two small parameters. Comput. Meth. Appl. Math., 3(3):443–458, 2003.

    MATH  MathSciNet  Google Scholar 

  275. J. Rubin. Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave bursters. Phys. Rev. E, 74:021917, 2006.

    MathSciNet  Google Scholar 

  276. N.F. Rulkov. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E, 65(4):041922, 2002.

    Google Scholar 

  277. J. Rubin and M. Wechselberger. Giant squid - hidden canard: the 3D geometry of the Hodgin-Huxley model. Biological Cybernetics, 97(1), 2007.

    Google Scholar 

  278. J. Rubin and M. Wechselberger. The selection of mixed-mode oscillations in a hodgkin-huxley model with multiple timescales. Chaos, 18, 2008.

    Google Scholar 

  279. A. Roberts, E. Widiasih, C.K.R.T. Jones, M. Wechselberger, and M. Zaks. Mixed mode oscillations in a conceptual climate model. arXiv:1311.5182, pages 1–26, 2013.

    Google Scholar 

  280. H.G. Rotstein, M. Wechselberger, and N. Kopell. Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM J. Applied Dynamical Systems, 7(4):1582–1611, 2008.

    MATH  MathSciNet  Google Scholar 

  281. M. Schell and F.N. Albahadily. Mixed-mode oscillations in an electrochemical system. II. A periodic-chaotic sequence. J. Chem. Phys., 90:822–828, 1989.

    Google Scholar 

  282. W.M. Schaffer, T.V. Bronnikova, and L.F. Olsen. Nonlinear dynamics of the peroxidase-oxidase reaction. II. Compatibility of an extended model with previously reported model-data correspondences. J. Phys. Chem., 105:5331–5340, 2001.

    Google Scholar 

  283. A. Shilnikov, R.L. Calabrese, and G. Cymbalyuk. Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E, 71(5):056214, 2005.

    Google Scholar 

  284. S.K. Scott. Oscillations, waves, and chaos in chemical kinetics. Oxford University Press, 1994.

    Google Scholar 

  285. K. Sriram and M.S. Gopinathan. Effects of delayed linear electrical perturbation of the Belousov–Zhabotinsky reaction: a case of complex mixed mode oscillations in a batch reactor. React. Kinet. Catal. Lett., 79(2):341–349, 2003.

    Google Scholar 

  286. W.E. Sherwood and J. Guckenheimer. Dissecting the phase response of a model bursting neuron. SIAM J. Appl. Dyn. Sys., 9(3):659–703, 2010.

    MATH  MathSciNet  Google Scholar 

  287. R.A. Schmitz, K.R. Graziani, and J.L. Hudson. Experimental evidence of chaotic states in the Belousov–Zhabotinskii reaction. J. Chem. Phys., 67(6):3040–3044, 1977.

    Google Scholar 

  288. C.G. Steinmetz, T. Geest, and R. Larter. Universality in the peroxidase-oxidase reaction: period doublings, chaos, period three, and unstable limit cycles. J. Phys. Chem., 97:5649–5653, 1993.

    Google Scholar 

  289. P.E. Strizhak and A.L. Kawczynski. Regularities in complex transient oscillations in the Belousov–Zhabotinsky reaction in a batch reactor. J. Phys. Chem., 99:10830–10833, 1995.

    Google Scholar 

  290. C.G. Steinmetz and R. Larter. The quasiperiodic route to chaos in a model of the peroxidase-oxidase reaction. J. Phys. Chem., 94(2):1388–1396, 1991.

    MathSciNet  Google Scholar 

  291. M. Storace, D. Linaro, and E. de Lange. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos, 18:033128, 2008.

    MathSciNet  Google Scholar 

  292. K. Showalter, R.M. Noyes, and K. Bar-Eli. A modified oregonator model exhibiting complicated limit cycle behaviour in a flow system. J. Chem. Phys., 69:2514–2524, 1978.

    Google Scholar 

  293. S. Schmidt and P. Ortoleva. Electric field effects on propagating BZ waves: predictions of an Oregonator and new pulse supporting models. J. Chem. Phys., 74:4488–4500, 1981.

    Google Scholar 

  294. A.A. Sharp, M.B. O’Neil, L.F. Abbott, and E. Marder. Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol., 69(3):992–995, 1993.

    Google Scholar 

  295. J.V. Stern, H.M. Osinga, A. LeBeau, and A. Sherman. Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bull. Math. Biol., 70(1):68–88, 2008.

    MATH  MathSciNet  Google Scholar 

  296. A. Scheeline, D.L. Olson, E.P. Williksen, G.A. Horras, M.L. Klein, and R. Larter. The peroxidase-oxidase oscillator and its constituent chemistries. Chem. Rev., 97:739–756, 1997.

    Google Scholar 

  297. A. Sherman and J. Rinzel. Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophys. J., 59(3):547–559, 1991.

    Google Scholar 

  298. C.L. Stokes and J. Rinzel. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Biophys. J., 65(2):597–602, 1993.

    Google Scholar 

  299. A. Shilnikov and N.F. Rulkov. Subthreshold oscillations in a map-based neuron model. Phys. Lett. A, 328(2):177–184, 2004.

    MATH  Google Scholar 

  300. A. Sherman, J. Rinzel, and J. Keizer. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys. J., 54(3):411–425, 1988.

    Google Scholar 

  301. P. Smolen, J. Rinzel, and A. Sherman. Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys. J., 64(6):1668–1680, 1993.

    Google Scholar 

  302. M.N. Stolyarov, V.A. Romanov, and E.I. Volkov. Out-of-phase mixed-mode oscillations of two strongly coupled identical relaxation oscillators. Phys. Rev. E, 54(1):163–169, 1995.

    Google Scholar 

  303. E. Sivan, L. Segel, and H. Parnas. Modulated excitability: a new way to obtain bursting neurons. Biol. Cybernet., 72(5):455–461, 1995.

    MATH  Google Scholar 

  304. C. Soto-Trevino, N. Kopell, and D. Watson. Parabolic bursting revisited. J. Math. Biol., 35(1): 114–128, 1996.

    MATH  MathSciNet  Google Scholar 

  305. P. Smolen, D. Terman, and J. Rinzel. Properties of a bursting model with two slow inhibitory variables. SIAM J. Appl. Math., 53(3):861–892, 1993.

    MATH  MathSciNet  Google Scholar 

  306. P.R. Shorten and D.J. Wall. A Hodgkin–Huxley model exhibiting bursting oscillations. Bull. Math. Biol., 62(4):695–715, 2000.

    Google Scholar 

  307. K.T. Tsaneva-Atanasova, H.M. Osinga, T. Riess, and A. Sherman. Full system bifurcation analysis of endocrine bursting models. J. Theor. Biol., 264(4):1133–1146, 2010.

    MathSciNet  Google Scholar 

  308. K.T. Tsaneva-Atanasova, C.L. Zimliki, R. Bertram, and A. Sherman. Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Biophys. J., 90(10):3434–3446, 2006.

    Google Scholar 

  309. N. Toporikova and R.J. Butera. Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J. Comput. Neurosci., 30(3):515–528, 2011.

    MathSciNet  Google Scholar 

  310. D. Terman. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math., 51(5):1418–1450, 1991.

    MATH  MathSciNet  Google Scholar 

  311. D. Terman. The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci., 2(2):135–182, 1992.

    MATH  MathSciNet  Google Scholar 

  312. J.H. Tien and J. Guckenheimer. Parameter estimation for bursting neural model. J. Comput. Neurosci., 24:358–373, 2008.

    MathSciNet  Google Scholar 

  313. K. Tomita, A. Ito, and T. Ohta. Simplified model for Belousov–Zhabotinsky reaction. J. Theor. Biol., 68(1):459–481, 1977.

    MathSciNet  Google Scholar 

  314. P. Tracqui. Mixed-mode oscillation genealogy in a compartmental model of bone mineral metabolism. J. Nonlinear Science, 4:69–103, 1994.

    MATH  Google Scholar 

  315. W.C. Troy. Mathematical analysis of the oregonator model of the Belousov-Zhabotinskii reaction. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 145–170. Wiley-Interscience, 1985.

    Google Scholar 

  316. J. Tabak, N. Toporikova, M.E. Freeman, and R. Bertram. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J. Comput. Neurosci., 22:211–222, 2007.

    MathSciNet  Google Scholar 

  317. W. Teka, J. Tabak, T. Vo, M. Wechselberger, and R. Bertram. The dynamics underlying pseudo-plateau bursting in a pituitary cell model. J. Math. Neurosci., 1(12):1–23, 2011.

    MathSciNet  Google Scholar 

  318. T. Turányi. Rate sensitivity analysis of a model of the Briggs-Rauscher reaction. React. Kinet. Lett., 45:235–241, 1991.

    Google Scholar 

  319. J.J. Tyson. On scaling the oregonator equations. In C. Vidal and A. Pacault, editors, Nonlinear Phenonema in Chemical Dynamics, pages 222–227. Springer, 1981.

    Google Scholar 

  320. J.J. Tyson. A quantitative account of oscillations, bistability, and traveling waves in the Belousov–Zhabotinskii reaction. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 93–144. Wiley-Interscience, 1985.

    Google Scholar 

  321. V. Vukojević, S. Anić, and L. Kolar-Anić. Investigation of dynamic behaviour of the Bray–Liebhafsky reaction in the CSTR. Determination of bifurcation points. J. Phys. Chem. A, 104:10731–10739, 2000.

    Google Scholar 

  322. T. Vo, R. Bertram, J. Tabak, and M. Wechselberger. Mixed mode oscillations as a mechanism for pseudo-plateau bursting. J. Comput. Neurosci., 28(3):443–458, 2010.

    MATH  MathSciNet  Google Scholar 

  323. T. Vo, R. Bertram, J. Tabak, and M. Wechselberger. Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting. SIAM J. Appl. Dyn. Syst., 12(2):789–830, 2013.

    MATH  MathSciNet  Google Scholar 

  324. T. Vo, R. Bertram, and M. Wechselberger. Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discr. Cont. Dyn. Syst., 32(8):2879–2912, 2012.

    MATH  MathSciNet  Google Scholar 

  325. F. van Goor, D. Zivadinovic, A.J. Martinez-Fuentes, and S.S. Stojilkovic. Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. J. Biol. Chem., 276:33840–33846, 2001.

    Google Scholar 

  326. C. Vidal and A. Pacault. Nonlinear Phenomena in Chemical Systems. Springer, 1981.

    Google Scholar 

  327. C. Vidal, J.-C. Roux, S. Bachelart, and A. Rossi. Experimental study of the transition to turbulence in the Belousov–Zhabotinskii reaction. Annals of the New York Academy of Sciences, 357(1):377–396, 1980.

    Google Scholar 

  328. G. De Vries. Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci., 8(3):281–316, 1998.

    MATH  MathSciNet  Google Scholar 

  329. G. De Vries. Bursting as an emergent phenomenon in coupled chaotic maps. Phys. Rev. E, 64(5):051914, 2001.

    Google Scholar 

  330. G. De Vries and A. Sherman. From spikers to bursters via coupling: help from heterogeneity. Bull. Math. Biol., 63(2):371–391, 2001.

    Google Scholar 

  331. V. Vukojević, P.G. Sørensen, and F. Hynne. Predictive value of a model of the Briggs–Rauscher reaction fitted to quenching experiments. J. Phys. Chem., 100:17175–17185, 1996.

    Google Scholar 

  332. T. Vo, J. Tabak, R. Bertram, and M. Wechselberger. A geometric understanding how fast activating potassium channels promote bursting in pituitary cells. J. Comp. Neurosci., 2013. to appear.

    Google Scholar 

  333. T.G.J. van Venrooij and M.T.M. Koper. Bursting and mixed-mode oscillations during the hydrogen peroxide reduction on a platinum electrode. Electrochimica Acta, 40(11):1689–1696, 1995.

    Google Scholar 

  334. G. Wallet. Entreé-sortie dans un tourbillon. Ann. Inst. Fourier, 36:157–184, 1986.

    MATH  MathSciNet  Google Scholar 

  335. X.J. Wang. Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D, 62:263–274, 1993.

    MATH  MathSciNet  Google Scholar 

  336. X.J. Wang. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol., 79(3):1549–1566, 1998.

    Google Scholar 

  337. K. Wierschem and R. Bertram. Complex bursting in pancreatic islets: a potential glycolytic mechanism. J. Theor. Biol., 228(4):513–521, 2004.

    Google Scholar 

  338. M. Wechselberger. Existence and bifurcation of canards in \(\mathbb{R}^{3}\) in the case of a folded node. SIAM J. Appl. Dyn. Syst., 4(1):101–139, 2005.

    MATH  MathSciNet  Google Scholar 

  339. X.J. Wang, D. Golomb, and J. Rinzel. Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc. Natl. Acad. Sci. USA, 92(12):5577–5581, 1995.

    Google Scholar 

  340. A.T. Winfree. The prehistory of the Belousov–Zhabotinskii reaction. J. Chem. Educ., 61:661–663, 1984.

    Google Scholar 

  341. C.J. Wilson and Y. Kawaguchi. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci., 16(7):2397–2410, 1996.

    Google Scholar 

  342. Y. Wu, W. Lu, W. Lin, G. Leng, and J. Feng. Bifurcations of emergent bursting in a neuronal network. PLoS ONE, 7(6):e38402, 2012.

    Google Scholar 

  343. J. Wojcik and A. Shilnikov. Voltage interval mappings for activity transitions in neuron models for elliptic bursters. Physica D, 240(14):1164–1180, 2011.

    MATH  Google Scholar 

  344. M. Wechselberger and W. Weckesser. Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D, 238:1598–1614, 2009.

    MATH  Google Scholar 

  345. M. Wechselberger and W. Weckesser. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discr. Cont. Dyn. Syst. S, 2(4):829–850, 2009.

    MATH  MathSciNet  Google Scholar 

  346. Y. Xie, L. Chen, Y.M. Kang, and K. Aihara. Controlling the onset of Hopf bifurcation in the Hodgkin–Huxley model. Phys. Rev. E, 77(6):061921, 2008.

    Google Scholar 

  347. K. Yadi. Averaging on slow and fast cycles of a three time scale system. J. Math. Anal. Appl., pages 1–26, 2013. accepted, to appear.

    Google Scholar 

  348. Z. Yang and Q. Lu. Bifurcation mechanisms of electrical bursting with different-time-scale slow variables. Int. J. Bif. Chaos, 21(5):1407–1425, 2011.

    MathSciNet  Google Scholar 

  349. Z. Yang, Q. Wang, M.-F. Danca, and J. Zhang. Complex dynamics of compound bursting with burst episode composed of different bursts. Nonlinear Dyn., 70:2003–2013, 2012.

    MathSciNet  Google Scholar 

  350. K. Yokota and I. Yamazaki. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry, 16(9):1913–1920, 1977.

    Google Scholar 

  351. M. Zaks. On chaotic subthreshold oscillations in a simple neuronal model. Math. Model. Nat. Phenom., 6(1):149–162, 2011.

    MATH  MathSciNet  Google Scholar 

  352. M. Zhang, P. Goforth, R. Bertram, A. Sherman, and L. Satin. The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J., 84(5):2852–2870, 2003.

    Google Scholar 

  353. A.M. Zhabotinsky. Periodic processes of malonic acid oxidation in a liquid phase (in Russian). Biofizika, 9:306–311, 1964.

    Google Scholar 

  354. A.M. Zhabotinsky. The early period of systematic studies of oscillations and waves in chemical systems. In R.J. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 1–6. Wiley-Interscience, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Oscillations. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_13

Download citation

Publish with us

Policies and ethics