Skip to main content

Introduction

  • Chapter
  • First Online:
  • 6096 Accesses

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

Abstract

In this chapter, we begin in Section 1.1 with a practical guide to orient the reader to how the book is structured and how it can be utilized. Several notational conventions are introduced as well. Section 1.2 covers some basic terminology for systems with two time scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. V.I. Arnold. Ordinary Differential Equations. MIT Press, 1973.

    Google Scholar 

  2. V.I. Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York, NY, 1983.

    Book  MATH  Google Scholar 

  3. K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman, J. Hubbard, R. Oliva, and W. Weckesser. The forced van der Pol equation II: canards in the reduced system. SIAM Journal of Applied Dynamical Systems, 2(4):570–608, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Berglund. Perturbation theory of dynamical systems. arXiv:math/0111178, pages 1–111, 2001.

    Google Scholar 

  5. Q. Bi. Dynamical analysis of two coupled parametrically excited van der Pol oscillators. Int. J. Non-Linear Mech., 39(1):33–54, 2004.

    Article  MATH  Google Scholar 

  6. G.D. Birkhoff. Boundary value and expansion problems of ordinary linear differential equations. Trans. Amer. Math. Soc., 9(4):373–395, 1908.

    Article  MATH  MathSciNet  Google Scholar 

  7. G.D. Birkhoff. On the asymptotic character of the solutions of certain linear differential equations containing a parameter. Trans. Amer. Math. Soc., 9(2):219–231, 1908.

    Article  MathSciNet  Google Scholar 

  8. G.D. Birkhoff and R.E. Langer. The boundary problems and developments associated with a system of ordinary linear differential equations of the first order. Proc. Amer. Acad. Arts Sci., 58(2):51–128, 1923.

    Article  Google Scholar 

  9. A. Buicǎ, J. Llibre, and O. Makarenkov. Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth van der Pol oscillator. SIAM J. Math. Anal., 40(6):2478–2495, 2009.

    Article  MathSciNet  Google Scholar 

  10. V.F. Butuzov, N.N. Nefedov, and K.R. Schneider. Singularly perturbed problems in case of exchange of stabilities. J. Math. Sci., 121(1):1973–2079, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Braun. Differential Equations and Their Applications. Springer, 1993.

    Google Scholar 

  12. M.L. Cartwright. Van der Pol’s equation for relaxation oscillations. In Contributions to the Theory of Nonlinear Oscillations II, pages 3–18. Princeton University Press, 1952.

    Google Scholar 

  13. C. Chicone. Ordinary Differential Equations with Applications. Texts in Applied Mathematics. Springer, 2nd edition, 2010.

    Google Scholar 

  14. M.L. Cartwright and J.E. Littlewood. On non-linear differential equations of second order. I. The equation \(\ddot{y} - k(1 - y^{2})\dot{y} + y = b\lambda k\cos (\lambda t + a)\), k large. J. London Math. Soc., 20:180–189, 1945.

    Google Scholar 

  15. M.L. Cartwright and J.E. Littlewood. On non-linear differential equations of second order. II. The equation \(\ddot{y} - kf(y,\dot{y}) + g(y,k) = p(t), k > 0\), f(y) ≥ 1. Ann. Math., 48(2):472–494, 1947.

    Google Scholar 

  16. J. Cronin and R.E. O’Malley, editors. Analyzing Multiscale Phenomena Using Singular Perturbation Methods, volume 56 of Proc. Symp. Appl. Math. AMS, 1999.

    Google Scholar 

  17. T. Chakraborty and R.H. Rand. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mech., 23(5):369–376, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. E.N. Dancer and S. Shusen. Interior peak solutions for an elliptic system of FitzHugh–Nagumo type. J Differential Equat., 229(2):654–679, 2006.

    Article  MATH  Google Scholar 

  19. W. E. Principles of Multiscale Modeling. CUP, 2011.

    Google Scholar 

  20. W. Eckhaus and E.M. de Jager. Theory and Applications of Singular Perturbations. Springer, 1982.

    Google Scholar 

  21. W. E and B. Engquist. Multiscale modeling and computation. Notices of the AMS, 50(9):1063–1070, 2003.

    Google Scholar 

  22. W. E, X. Li, and E. Vanden-Eijnden. Some recent progress in multiscale modeling. In Multiscale Modelling and Simulation, pages 3–21. Springer, 2004.

    Google Scholar 

  23. C.H. Edwards and D.E. Penney. Calculus. Prentice Hall, 2002.

    Google Scholar 

  24. A. Franci, G. Drion, and R. Sepulchre. An organizing center in a planar model of neuronal excitability. SIAM J. Appl. Dyn. Syst., 11(4):1698–1722, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Franci, G. Drion, and R. Sepulchre. Modeling neuronal bursting: singularity theory meets neurophysiology. arXiv:1305.7364, pages 1–28, 2013.

    Google Scholar 

  26. R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics, 17:257–269, 1955.

    Article  Google Scholar 

  27. R. FitzHugh. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol., 43:867–896, 1960.

    Article  Google Scholar 

  28. R. FitzHugh. Impulses and physiological states in models of nerve membranes. Biophys. J., 1:445–466, 1961.

    Article  Google Scholar 

  29. O.V. Gendelman and T. Bar. Bifurcations of self-excitation regimes in a van der Pol oscillator with a nonlinear energy sink. Physica D, 239:220–229, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  30. I.M. Gel’fand. Lectures on Linear Algebra. Dover, 1989.

    Google Scholar 

  31. J. Guckenheimer, K. Hoffman, and W. Weckesser. The forced van der Pol equation I: the slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst., 2(1):1–35, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Glendinning. Stability, Instability and Chaos. CUP, 1994.

    Google Scholar 

  33. D.A. Goussis. The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: The case of vdP relaxation-oscillations. Physica D, 248:16–32, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Guckenheimer. Towards a global theory of singularly perturbed systems. Progress in Nonlinear Differential Equations and Their Applications, 19:214–225, 1996.

    MathSciNet  Google Scholar 

  35. J. Guckenheimer. Bifurcation and degenerate decomposition in multiple time scale dynamical systems. In Nonlinear Dynamics and Chaos: Where do we go from here?, pages 1–20. Taylor and Francis, 2002.

    Google Scholar 

  36. J. Guckenheimer. Global bifurcations of periodic orbits in the forced van der Pol equation. In H.W. Broer, B. Krauskopf, and G. Vegter, editors, Global Analysis of Dynamical Systems - Festschrift dedicated to Floris Takens, pages 1–16. Inst. of Physics Pub., 2003.

    Google Scholar 

  37. P. Habets. On relaxation oscillations in a forced van der Pol oscillator. Proc. Roy. Soc. Edinburgh A, 82(1):41–49, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  38. S.P. Hastings. Some mathematical problems from neurobiology. The American Mathematical Monthly, 82(9):881–895, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  39. S.P. Hastings. On the existence of homoclinic and periodic orbits in the FitzHugh–Nagumo equations. Quart. J. Math. Oxford, 2(27):123–134, 1976.

    Article  MathSciNet  Google Scholar 

  40. X. Han and Q. Bi. Slow passage through canard explosion and mixed-mode oscillations in the forced van der Pol’s equation. Nonlinear Dyn., 68:275–283, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Hek. Geometric singular perturbation theory in biological practice. J. Math. Biol., 60:347–386, 2010.

    Article  MathSciNet  Google Scholar 

  42. A.L. Hodgkin and A.F. Huxley. The components of membrane conductance in the giant axon of Loligo. J. Physiol., 116:473–496, 1952.

    Google Scholar 

  43. A.L. Hodgkin and A.F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 116:449–472, 1952.

    Google Scholar 

  44. A.L. Hodgkin and A.F. Huxley. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol., 116:424–448, 1952.

    Google Scholar 

  45. A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117:500–544, 1952.

    Article  Google Scholar 

  46. P.J. Holmes and D.A. Rand. Bifurcations of the forced van der Pol oscillator. Quarterly Appl. Math., 35:495–509, 1978.

    MATH  MathSciNet  Google Scholar 

  47. J.L. Hindmarsh and R.M. Rose. A model of the nerve impulse using two first-order differential equations. Nature, 296:162–164, 1982.

    Article  Google Scholar 

  48. P.-F. Hsieh and Y. Sibuya. Basic Theory of Ordinary Differential Equations. Springer, 1999.

    Google Scholar 

  49. M.W. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, 2nd edition, 2003.

    Google Scholar 

  50. K. Jänich. Linear Algebra. Springer, 1994.

    Google Scholar 

  51. E.M. De Jager and J. Furu. The Theory of Singular Perturbations. North-Holland, 1996.

    Google Scholar 

  52. T.J. Kaper. An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In J. Cronin and R.E. O’Malley, editors, Analyzing Multiscale Phenomena Using Singular Perturbation Methods, pages 85–131. Springer, 1999.

    Google Scholar 

  53. B. Krauskopf and H.M. Osinga. Investigating torus bifurcations in the forced van der Pol oscillator. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, pages 199–208. Springer, 2000.

    Google Scholar 

  54. T.W. Körner. Vectors, Pure and Applied: A General Introduction to Linear Algebra. CUP, 2012.

    Google Scholar 

  55. M.K. Kadalbajoo and Y.N. Reddy. Asymptotic and numerical analysis of singular perturbation problems: a survey. Appl. Math. Comp., 30(3):223–259, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  56. T. Kapitaniak and W.H. Steeb. Transition to hyperchaos in coupled generalized van der Pol equations. Phys. Lett. A, 152: 33–36, 1991.

    Article  MathSciNet  Google Scholar 

  57. K. Konishi, M. Takeuchi and T. Shimizu. Design of external forces for eliminating traveling wave in a piecewise linear FitzHugh–Nagumo model. Chaos, 21:023101, 2011.

    Article  MathSciNet  Google Scholar 

  58. N. Levinson. Perturbations of discontinuous solutions of nonlinear systems of differential equations. Proc. Nat. Acad. Sci. USA, 33:214–218, 1947.

    Article  MathSciNet  Google Scholar 

  59. J.E. Littlewood. On non-linear differential equations of second order: III. The equation \(\ddot{y} - k (1 - y^{2})\dot{y} + y = b\mu k\cos (\mu t+\alpha )\) for large k, and its generalizations. Acta. Math., 97:267–308, 1957.

    Google Scholar 

  60. J.E. Littlewood. On non-linear differential equations of second order: IV. The general equation \(\ddot{y} - kf(y)\dot{y} + g(y) = bkp(\varphi )\), \(\varphi = t + a\) for large k and its generalizations. Acta. Math., 98: 1–110, 1957.

    Google Scholar 

  61. O. Lopes. FitzHugh–Nagumo system: boundedness and convergence to equilibrium. J. Differential Equat., 44(3):400–413, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  62. W.S. Loud. Periodic solutions of a perturbed autonomous system. Ann. Math., 70(3):490–529, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  63. A. Maccari. The response of a parametrically excited van der Pol oscillator to a time delay state feedback. Nonlinear Dynamics, 26(2):105–119, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  64. H.P. McKean. Nagumo’s equation. Adv. Math., 4:209–223, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  65. J.D. Meiss. Differential Dynamical Systems. SIAM, 2007.

    Google Scholar 

  66. P.D. Miller. Applied Asymptotic Analysis. AMS, 2006.

    Google Scholar 

  67. K. Murali and M. Lakshmanan. Transmission of signals by synchronization in a chaotic van der Pol-Duffing oscillator. Phys. Rev. E, 48(3):R1624–R1626, 1993.

    Article  Google Scholar 

  68. R. Mettin, U. Parlitz, and W. Lauterborn. Bifurcation structure of the driven van der Pol oscillator. Int. J. Bif. Chaos, 3(6):1529–1555, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  69. M. Nagumo. Über das Verhalten der Integrale von λ y″ + f(x, y, y′, λ) = 0 für λ → 0. Proc. Phys. Math. Soc. Japan, 21:529–534, 1939.

    MathSciNet  Google Scholar 

  70. M. Nagumo. Mitio Nagumo Collected Papers. Springer, 1993.

    Google Scholar 

  71. J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50:2061–2070, 1962.

    Article  Google Scholar 

  72. R.E. O’Malley. Topics in singular perturbations. Adv. Math., 2:365–470, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  73. R.E. O’Malley. Naive singular perturbation theory. Math. Mod. Meth. Appl. Sci., 11:119–131, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  74. R.E. O’Malley. Singularly rerturbed linear two-point boundary value problems. SIAM Rev., 50(3): 459–482, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  75. L.S. Pontryagin. Asymptotic properties of solutions with small parameters multiplying leading derivatives. Izv. AN SSSR, Ser. Matematika, 21(5):605–626, 1957.

    Google Scholar 

  76. L.S. Pontryagin and L.V. Rodygin. Approximate solution of a system of ordinary differential equations involving a small parameter in the derivatives. Soviet Math. Dokl., 1:237–240, 1960.

    MATH  MathSciNet  Google Scholar 

  77. C. Pugh. Real Mathematical Analysis. Springer, 2010.

    Google Scholar 

  78. C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu. The FitzHugh–Nagumo Model - Bifurcation and Dynamics. Kluwer, 2000.

    Google Scholar 

  79. R.H. Rand and P.J. Holmes. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Non-Linear Mech., 15(4):387–399, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  80. J. Rinzel and J.P. Keener. Hopf bifurcation to repetitive activity in nerve. SIAM J. Appl. Math., 43(4):907–922, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  81. B. Rossetto. Trajectoires lentes des systems dynamiques lents-rapides. In Analysis and Optimization of Systems, Lecture Notes in Contr. Inform. Sci., pages 680–695. Springer, 1986.

    Google Scholar 

  82. C. Reinecke and G. Sweers. A positive solution on \(\mathbb{R}^{N}\) to a system of elliptic equations of FitzHugh–Nagumo type. J. Differential Equat., 153(2):292–312, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  83. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.

    Google Scholar 

  84. M. Spivak. Calculus. CUP, 2006.

    Google Scholar 

  85. D.W. Storti and R.H. Rand. Dynamics of two strongly coupled van der Pol oscillators. Int. J. Non-Linear Mech., 17(3):143–152, 1982.

    Article  MathSciNet  Google Scholar 

  86. D.W. Storti and R.H. Rand. Dynamics of two strongly coupled relaxation oscillators. SIAM J. Appl. Math., 46(1):56–67, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  87. K. Shimizu, Y. Saito, M. Sekikawa, and N. Inaba. Complex mixed-mode oscillations in a Bonhoeffer–van der Pol oscillator under weak periodic perturbation. Physica D, 241:1518–1526, 2012.

    Article  MATH  Google Scholar 

  88. M. Steinhauser. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications. Springer, 2007.

    Google Scholar 

  89. S.H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 2000.

    Google Scholar 

  90. G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2009.

    Google Scholar 

  91. G. Teschl. Ordinary Differential Equations and Dynamical Systems. AMS, 2012.

    Google Scholar 

  92. A.N. Tikhonov. Systems of differential equations containing small parameters in the derivatives. Mat. Sbornik N. S., 31:575–586, 1952.

    MathSciNet  Google Scholar 

  93. J.-C. Tsai and J. Sneyd. Traveling waves in the buffered FitzHugh–Nagumo model. SIAM J. Appl. Math., 71(5):1606–1636, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  94. A.B. Vasilieva. Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives. Russian Math. Surveys, 18:13–84, 1963.

    Article  Google Scholar 

  95. A.B. Vasilieva. The development of the theory of ordinary differential equations with a small parameter multiplying the highest derivative during the period 1966–1976. Russian Math. Surveys, 31(6):109–131, 1976.

    Article  Google Scholar 

  96. A.B. Vasilieva. On the development of singular perturbation theory at Moscow State University and elsewhere. SIAM Rev., 36(3):440–452, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  97. B. van der Pol. A theory of the amplitude of free and forced triode vibrations. Radio Review, 1: 701–710, 1920.

    Google Scholar 

  98. B. van der Pol. On relaxation oscillations. Philosophical Magazine, 7:978–992, 1926.

    Google Scholar 

  99. B. van der Pol. The nonlinear theory of electric oscillations. Proc. IRE, 22:1051–1086, 1934.

    Article  MATH  Google Scholar 

  100. B. van der Pol and J. van der Mark. Frequency demultiplication. Nature, 120:363–364, 1927.

    Article  Google Scholar 

  101. B. van der Pol and J. van der Mark. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag. Suppl., 6:763–775, 1928.

    Article  Google Scholar 

  102. F. Verhulst. Invariant manifolds in dissipative dynamical systems. Acta Appl. Math., 87(1):229–244, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  103. F. Verhulst. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer, 2005.

    Google Scholar 

  104. F. Verhulst. Quenching of self-excited vibrations. J. Eng. Mech., 53(3):349–358, 2005.

    MATH  MathSciNet  Google Scholar 

  105. F. Verhulst. Nonlinear Differential Equations and Dynamical Systems. Springer, 2006.

    Google Scholar 

  106. F. Veerman and F. Verhulst. Quasiperiodic phenomena in the van der Pol–Mathieu equation. J. Sound Vibr., 326(1):314–320, 2009.

    Article  Google Scholar 

  107. J. Wei and M. Winter. Clustered spots in the FitzHugh–Nagumo system. J. Differential Equat., 213(1):121–145, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  108. J. Xu and K.W. Chung. Effects of time delayed position feedback on a van der Pol–Duffing oscillator. Physica D, 180(1):17–39, 2003.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Introduction. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_1

Download citation

Publish with us

Policies and ethics