Skip to main content

Learning Imaging Biomarker Trajectories from Noisy Alzheimer’s Disease Data Using a Bayesian Multilevel Model

  • Conference paper
Bayesian and grAphical Models for Biomedical Imaging

Abstract

Characterising the time course of a disease with a protracted incubation period ultimately requires dense longitudinal studies, which can be prohibitively long and expensive. Considering what can be learned in the absence of such data, we estimate cohort-level biomarker trajectories by fitting cross-sectional data to a differential equation model, then integrating the fit. These fits inform our new stochastic differential equation model for synthesising individual-level biomarker trajectories for prognosis support. Our Bayesian multilevel regression model explicitly includes measurement noise estimation to avoid regression dilution bias. Applicable to any disease, here we perform experiments on Alzheimer’s disease imaging biomarker data — volumes of regions of interest within the brain. We find that Alzheimer’s disease imaging biomarkers are dynamic over timescales from a few years to a few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack Jr., C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., Carrillo, M.C., Thies, B., Weintraub, S., Phelps, C.H.: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia 7(3), 263–269 (2011)

    Article  Google Scholar 

  2. Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C., Trojanowski, J.Q.: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology 9(1), 119–128 (2010)

    Article  Google Scholar 

  3. Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Liu, E., Morris, J.C., Petersen, R.C., Saykin, A.J., Schmidt, M.E., Shaw, L., Siuciak, J.A., Soares, H., Toga, A.W., Trojanowski, J.Q.: The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer’s & Dementia 8(1), S1–S68 (2012)

    Google Scholar 

  4. Fonteijn, H.M., Modat, M., Clarkson, M.J., Barnes, J., Lehmann, M., Hobbs, N.Z., Scahill, R.I., Tabrizi, S.J., Ourselin, S., Fox, N.C., Alexander, D.C.: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease

    Google Scholar 

  5. Huang, J., Alexander, D.: Probabilistic Event Cascades for Alzheimer’s disease. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2012)

    Google Scholar 

  6. Young, A.L., Oxtoby, N.P., Daga, P., Cash, D.M., Fox, N.C., Ourselin, S., Schott, J.M., Alexander, D.C.: A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain 137(9), 2564–2577 (2014), http://brain.oxfordjournals.org/content/137/9/2564

    Article  Google Scholar 

  7. Ashford, J.W., Schmitt, F.A.: Modeling the time-course of Alzheimer dementia. Current Psychiatry Reports 3(1), 20–28 (2001)

    Article  Google Scholar 

  8. Yang, E., Farnum, M., Lobanov, V., Schultz, T., Raghavan, N., Samtani, M.N., Novak, G., Narayan, V., DiBernardo, A.: Quantifying the Pathophysiological Timeline of Alzheimer’s Disease. Journal of Alzheimer’s Disease 26(4), 745–753 (2011)

    Google Scholar 

  9. Sabuncu, M., Desikan, R., Sepulcre, J., Yeo, B., Liu, H., Schmansky, N., Reuter, M., Weiner, M., Buckner, R., Sperling, R.: The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Archives of Neurology 68(8), 1040 (2011)

    Article  Google Scholar 

  10. Villemagne, V.L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K.A., Salvado, O., Szoeke, C., Macaulay, S.L., Martins, R., Maruff, P., Ames, D., Rowe, C.C., Masters, C.L.: Amyloid β deposition and neurodegeneration and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurology 12(4), 357–367 (2013)

    Article  Google Scholar 

  11. Barnes, J., Ridgway, G.R., Bartlett, J., Henley, S.M.D., Lehmann, M., Hobbs, N., Clarkson, M.J., MacManus, D.G., Ourselin, S., Fox, N.C.: Head size, age and gender adjustment in MRI studies: a necessary nuisance? NeuroImage 53(4), 1244–1255 (2010)

    Article  Google Scholar 

  12. Stan Development Team: Technical report, Stan: A C++ Library for Probability and Sampling, Version 2.2 (2014)

    Google Scholar 

  13. Plummer., M.: JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing (2003)

    Google Scholar 

  14. Steyvers, M.: Technical report MATJAGS 1.3, psiexp.ss.uci.edu/research/programs_data/jags

  15. Jacobs, K.: Stochastic Processes for Physicists. Cambridge University Press (2010)

    Google Scholar 

  16. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Statistical Science 7(4), 457–472 (1992)

    Article  Google Scholar 

  17. Villain, N., Chételat, G., Grassiot, B., Bourgeat, P., Jones, G., Ellis, K.A., Ames, D., Martins, R.N., Eustache, F., Salvado, O., Masters, C.L., Rowe, C.C., Villemagne, V.L., The AIBL Research Group: Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB–PET longitudinal study. Brain 135(7), 2126–2139 (2013)

    Google Scholar 

  18. Smith, A.K., White, D.B., Arnold, R.M.: Uncertainty — the other side of prognosis. New England Journal of Medicine 368(26), 2448–2450 (2013)

    Article  Google Scholar 

  19. Jack, C.R., Wiste, H.J., Lesnick, T.G., Weigand, S.D., Knopman, D.S., Vemuri, P., Pankratz, V.S., Senjem, M.L., Gunter, J.L., Mielke, M.M., Lowe, V.J., Boeve, B.F., Petersen, R.C.: Brain β-amyloid load approaches a plateau. Neurology 80(10), 890–896 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oxtoby, N.P. et al. (2014). Learning Imaging Biomarker Trajectories from Noisy Alzheimer’s Disease Data Using a Bayesian Multilevel Model. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D., Ribbens, A. (eds) Bayesian and grAphical Models for Biomedical Imaging. Lecture Notes in Computer Science, vol 8677. Springer, Cham. https://doi.org/10.1007/978-3-319-12289-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12289-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12288-5

  • Online ISBN: 978-3-319-12289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics