Current Status and Future Prospective of Neuroimaging for Epilepsy

  • F. CaranciEmail author
  • F. D’Arco
  • A. D’Amico
  • C. Russo
  • F. Briganti
  • M. Quarantelli
  • E. Tedeschi
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Although the diagnosis of epilepsy remains mainly clinical, Magnetic Resonance Imaging (MRI) plays a crucial role in the detection of lesions that can cause epilepsy, with high impact on the diagnostic work-up as well as on therapeutic planning. Morphologic MR imaging is still the main technique for identifying lesions responsible for the epilepsy, providing images with high spatial resolution, excellent soft-tissue contrast, and multiplanar view. Quantitative MR image analysis (segmentation, voxel-based morhometry), based on 3D T1-weighted images, offers an objective means of analyzing MR images thereby improving the capability of detecting subtle lesions, often interpreted as negative by qualitative assessment of the morphologic MR imaging. Diffusion tensor imaging allows the quantification of water molecules diffusion and characterizes the degree and direction of anisotropy. Areas of abnormal diffusion, responsible for epilepsy, may be related to occult dysgenesis, or to acquired damage, resulting in neuronal loss, gliosis, and extracellular space expansion; these changes often result in reduced anisotropy and in an increase in mean diffusivity. Magnetic resonance spectroscopy provides information about the biochemical environment of the brain, thereby helping in lateralizing the epilepsy focus. Functional MR imaging is used for lateralizing language functions, and also for surgical planning predicting functional deficits following epilepsy surgery. The interpretation of MR data should always be done by a neuroradiologist expert in the field of epilepsy imaging, trying to correlate the images with clinical and electrophysiological data.


Epilepsy MRI PET SPECT Functional MRI MR spectroscopy 


  1. Al Sufiani F, Ang LC (2012) Neuropathology of temporal lobe epilepsy. Epilepsy Res Treat. vol 2012, Article ID 624519Google Scholar
  2. Amstutz DR, Coons SW, Kerrigan JF et al (2006) Hypothalamic hamartomas: correlation of MR imaging and spectroscopic findings with tumor glial content. AJNR Am J Neuroradiol 27(4)794–798PubMedGoogle Scholar
  3. Barkovich AJ (2010) Current concepts of polymicrogyria. Neuroradiology 52:479–487PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barkovich AJ, Raybaud C (2012) Pediatric neuroimaging-Fifth edition. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  5. Barkovich AJ et al (2007) Diagnostic imaging—pediatric neuroradiology. AmyrsisGoogle Scholar
  6. Batista CE, Chugani HT, Hu J et al (2008) Magnetic resonance spectroscopic imaging detects abnormalities in normal-appearing frontal lobe of patients with Sturge-Weber syndrome. J Neuroimaging 18(3):306–313PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bentivoglio M, Tassi L, Pech E et al (2003) Cortical development and focal cortical dysplasia. Epileptic Disord 5(Suppl 2):S27–34Google Scholar
  8. Berg AT, Testa FM, Levy SR, Shinnar S (2000) Neuroimaging in children with newly diagnosed epilepsy: a community-based study. Pediatrics 106:527–532PubMedCrossRefGoogle Scholar
  9. Biswal BB (2012) Resting state fMRI: a personal history. Neuroimage 62(2):938–944PubMedCrossRefGoogle Scholar
  10. Bonilha L, Halford J, Rorden C et al (2007) Microstructural white matter abnormalities in nodular heterotopia with overlying polymicrogyria. Seizure 16(1):74–80PubMedCrossRefGoogle Scholar
  11. Bronen RA, Fulbright RK, Spencer DD et al (1996) Refractory epilepsy: comparison of MR imaging, CT, and histopathologic findings in 117 patients. Radiology 201:97–105PubMedCrossRefGoogle Scholar
  12. Caranci F, Bartiromo F, Cirillo L et al (2007) Thalamic changes in mesial temporal sclerosis: a limbic system pathology. Neuroradiol J 218–223Google Scholar
  13. Caruso PA, Johnson J, Thibert R et al (2013) The use of magnetic resonance spectroscopy in the evaluation of epilepsy. Neuroimag Clin N Am 23:407–424CrossRefGoogle Scholar
  14. Chugani HT, Shields WD, Shewmon DA et al (1990) Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 7(4):406–413CrossRefGoogle Scholar
  15. Chung EM, Biko DM, Schroeder JW et al (2012) From the radiologic pathology archives: precocious puberty: radiologic-pathologic correlation. Radiographics 32(7):2071–2099PubMedCrossRefGoogle Scholar
  16. Colombo N, Salamon N, Raybaud C et al (2009) Imaging of malformations of cortical development. Epileptic Disord 11(3):194–205PubMedGoogle Scholar
  17. De Cocker L, D’Arco F, Demaerel P, Smithuis R (2012) Role of MRI in epilepsy. The Radiology Assistant. Accessed 1 Sept 2012
  18. De Volder AG, Gadisseux JF, Michel CJ et al (1994) Brain glucose utilization in band heterotopia: synaptic activity of “double cortex”. Pediatr Neurol 11:290–294PubMedCrossRefGoogle Scholar
  19. Dumas de la Roque A, Oppenheim C, Chassoux F et al (2005) Diffusion tensor imaging of partial intractable epilepsy. Eur Radiol 15:279–285PubMedCrossRefGoogle Scholar
  20. Eriksson SH, Rugg-Gunn FJ, Symms MR et al (2001) Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124:617–626PubMedCrossRefGoogle Scholar
  21. Farid N, Girard HM, Kemmotsu N et al (2012) Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology 26(2):542–550CrossRefGoogle Scholar
  22. Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17(5):373–384PubMedCrossRefGoogle Scholar
  23. Fonseca Vde C, Yasuda CL, Tedeschi GG et al (2012) White matter abnormalities in patients with focal cortical dysplasia revealed by diffusion tensor imaging analysis in a voxelwise approach. Front Neurol 121Google Scholar
  24. Francis F, Meyer G, Fallet-Bianco C et al (2006) Human disorders of cortical development: from past to present. Eur J Neurosci 23:877–893PubMedCrossRefGoogle Scholar
  25. Gastaut H, Gastaut JL (1979) Computerized transverse axial tomography in epilepsy. Epilepsia 17:325–336CrossRefGoogle Scholar
  26. Gelabert-González M, Amo JM, Arcos Algaba A et al (2011) Intracranial gangliogliomas. A review of a series of 20 patients. Neurologia 26(7):405–415PubMedCrossRefGoogle Scholar
  27. Gleeson JG, Luo RF, Grant PE et al (2000) Genetic and neuroradiological heterogeneity of double cortex syndrome. Ann Neurol 47:265–269PubMedCrossRefGoogle Scholar
  28. Guerrini R, Marini C (2006) Genetic malformations of cortical development. Exp Brain Res 173(2):322–333PubMedCrossRefGoogle Scholar
  29. Guerrini R, Mei D, Sisodiya S et al (2004) Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 63:51–56PubMedCrossRefGoogle Scholar
  30. Guimaraes CA, Bonilha L, Franzon RC et al (2007) Distribution of regional gray matter abnormalities in a pediatric population with temporal lobe epilepsy and correlation with neuropsychological performance. Epilepsy Behav 11:558–566PubMedCrossRefGoogle Scholar
  31. Hankey G, Davies L, Gubbay SS (1989) Long term survival with early childhood intracerebral tumours. J Neurol Neurosurg Psychiatry 52:778–781PubMedCentralPubMedCrossRefGoogle Scholar
  32. Iaccarino C, Tedeschi E, Rapanà A et al (2009) Is the distance between mammillary bodies predictive of a thickened third ventricle floor? J Neurosurg 110(5):852–857PubMedCrossRefGoogle Scholar
  33. Jahodova A, Krsek P, Kyncl M et al (2014) Distinctive MRI features of the epileptogenic zone in children with tuberous sclerosis. Eur J Radiol 83(4):703–709PubMedCrossRefGoogle Scholar
  34. Juhász C, Batista CE, Chugani DC et al (2007a) Evolution of cortical metabolic abnormalities and their clinical correlates in Sturge-Weber syndrome. Eur J Paediatr Neurol Sep; 11(5):277–284Google Scholar
  35. Juhász C, Haacke EM, Hu J et al (2007b) Multimodality imaging of cortical and white matter abnormalities in Sturge-Weber syndrome. AJNR Am J Neuroradiol 28(5):900–906Google Scholar
  36. Kalantari BN, Salamon N (2008) Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR Am J Roentgenol 190(5):W304–309PubMedCrossRefGoogle Scholar
  37. Kamiya K, Sato N, Saito Y et al (2013) Accelerated myelination along fiber tracts in patients with hemimegalencephaly. J Neuroradiol 30. pii: S0150-9861(13)00084-9. doi:10.1016/j.neurad.2013.08.005. (Epub ahead of print)Google Scholar
  38. Keller SS, Roberts N (2007) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of literature. Epilepsia 49(5):741–757PubMedCrossRefGoogle Scholar
  39. Lange M, Winner B, Muller JL et al (2004) Functional imaging in periventricular nodule heterotopy caused by a new Filamin A mutation. Neurology 62:151–152PubMedCrossRefGoogle Scholar
  40. Lee MJ, Kim HD, Lee JS, Kim DS, Lee SK (2013) Usefulness of diffusion tensor tractography in pediatric epilepsy surgery. Yonsei Med J 54(1):21–27PubMedCentralPubMedCrossRefGoogle Scholar
  41. Li LM, Cendes F, Bastos AC et al (1998) Neuronal metabolic dysfunction in patients with cortical developmental malforamtions. A proton magnetic resonance spectroscopic imaging study. Neurology 50:755–759PubMedCrossRefGoogle Scholar
  42. Li Y, Du H, Xie B et al (2010) Cerebellum abnormalities in idiopathic generalized epilepsy with generalized tonic-clonic seizures revealed by diffusion tensor imaging. PLoS One 5(12):e15219PubMedCentralPubMedCrossRefGoogle Scholar
  43. Li Q, Zhang Q, Sun H, Zhang Y, Bai R (2011) Double inversion recovery magnetic resonance imaging at 3 T: diagnostic value in hippocampal sclerosis. J Comput Assist Tomogr 35(2):290–293PubMedCrossRefGoogle Scholar
  44. Lim CC, Yin H, Loh NK, Chua VG et al (2005) Malformations of cortical development: high-resolution MR and diffusion tensor imaging of fiber tracts at 3T. AJNR Am J Neuroradiol 26(1):61–64PubMedGoogle Scholar
  45. Luat AF, Makki M, Chugani HT (2007) Neuroimaging in tuberous sclerosis complex. Curr Opin Neurol 20(2):142–150PubMedCrossRefGoogle Scholar
  46. Luo C, Li Q, Lai X et al (2011) Altered functional connectivity in default mode network in absence epilepsy: a resting-state FMRI study. Hum Brain Mapp 32:438–449PubMedCrossRefGoogle Scholar
  47. Mai R, Tassi L, Cossu M et al (2003) A neuropathological, stereo-EEG, and MRI study of subcortical band heterotopia. Neurology 60:1834–1838PubMedCrossRefGoogle Scholar
  48. Marsh l, Lim Ko, Sullivan EV et al (1996) Proton magnetic resonance spectroscopy of a gray matter heterotopia. Neurology 47:1571–1574PubMedCrossRefGoogle Scholar
  49. Martina DD, Seegerb U, Rankea MB, Groddb W (2003) MR imaging and spectroscopy of a tuber cinereum hamartoma in a patient with growth hormone deficiency and hypogonadotropic hypogonadism. AJNR Am J Neuroradiol 24:1177–1180Google Scholar
  50. Miao Y, Juhász C, Wu J et al (2011) Clinical correlates of white matter blood flow perfusion changes in Sturge-Weber syndrome: a dynamic MR perfusion-weighted imaging study. AJNR Am J Neuroradiol 32(7):1280–1285PubMedCentralPubMedCrossRefGoogle Scholar
  51. Milligan TA, Zamani A, Bromfield E (2009) Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure 18(2):104–108PubMedCrossRefGoogle Scholar
  52. Mittal S, Mittal M, Montes JL et al (2013) Hypothalamic hamartomas. Part 1. Clinical, neuroimaging, and neurophysiological characteristics. Neurosurg Focus 34(6):E6PubMedCrossRefGoogle Scholar
  53. Montenegro MA, Li LM, Guerreiro MM et al (2002) Focal cortical dysplasia: improving diagnosis and localization with magnetic resonance imaging multiplanar and curvilinear reconstruction. J Neuroimaging 12:224–230PubMedCrossRefGoogle Scholar
  54. Mueller SG, Ebel A, Barakos J et al (2011) Widespread extrahippocampal NAA/(Cr + Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol 258(4):603–612PubMedCentralPubMedCrossRefGoogle Scholar
  55. Opplet A (2006) Imaging systems for medical diagnostics. fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound. Siemens, 2006Google Scholar
  56. Osborn AG (2013). Osborn’s brain: imaging, pathology, and anatomy. Amyrsis Salt Lake City, UtahGoogle Scholar
  57. Ozlen F, Gunduz A, Asan Z et al (2010) Dysembryoplastic neuroepithelial tumors and gangliogliomas: clinical results of 52 patients. Acta Neurochir (Wien) 152(10):1661–1671PubMedCrossRefGoogle Scholar
  58. Peters JM, Taquet M, Prohl AK et al (2013) Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol 8(5):583–597PubMedCentralPubMedCrossRefGoogle Scholar
  59. Pittau F, Grouiller F, Spinelli L et al (2014) The role of functional Neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 5:31PubMedCentralPubMedGoogle Scholar
  60. Raz E, Zagzag D, Saba L et al (2012) Cyst with a mural nodule tumor of the brain. Cancer Imaging 12:237–244PubMedCentralPubMedCrossRefGoogle Scholar
  61. Savic I, Thomas AM, Ke Y et al (2000) In vivo measurements of glutamine + glutamate (Glx) and Nacetyl aspartate (NAA) levels in human partial epilepsy. Acta Neurol Scand 102:179–188PubMedCrossRefGoogle Scholar
  62. Scott CA, Fish DR, Smith SJ et al (1999) Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry 66:69–71PubMedCentralPubMedCrossRefGoogle Scholar
  63. Sicca F, Kelemen A, Genton P et al (2003) Mosaic mutations of the LIS1 gene cause subcortical band heterotopia. Neurology 61:1042–1046PubMedCrossRefGoogle Scholar
  64. Striano P, Caranci F, Di Benedetto R et al (2009) 1H MR spectroscopy indicates prominent cerebellar dysfunction in benign adult familial myoclonic epilepsy. Epilepsia 50(6):1491–1497PubMedCrossRefGoogle Scholar
  65. Trishit Roy T, Alak Pandit (2011) Neuroimaging in epilepsy. Ann Indian Acad Neurol 14(2):78–80PubMedCentralPubMedCrossRefGoogle Scholar
  66. Valdueza JM, Cristante L, Dammann O et al (1994) Hypothalamic hamartomas: with special reference to gelastic epilepsy and surgery. Neurosurgery 34(6):949–958PubMedCrossRefGoogle Scholar
  67. Wattjes MP, Lutterbey GG, Gieseke J et al (2007) Double Inversion Recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 28:54–59PubMedCrossRefGoogle Scholar
  68. Widjaja E, Raybaud C (2008) Advances in neuroimaging in patient with epilepsy. Neurosurg Focus 25(3):E3PubMedCrossRefGoogle Scholar
  69. Widjaja E, Zarei S, Mahmoodabadi CG et al (2012) Reduced cortical thickness in children with new-onset seizures. AJNR Am J Neuroradiol 33:673–677PubMedCrossRefGoogle Scholar
  70. Widjaja E, Zamyadi M, Raybaud C et al (2013) Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy. AJNR Am J Neuroradiol 4:2386–2392CrossRefGoogle Scholar
  71. Widjaja E, Kis A, Go C et al (2014) Bilateral white matter abnormality in children with frontal lobe epilepsy. Epilepsy Res 108(2):289–294PubMedCentralPubMedCrossRefGoogle Scholar
  72. Wieck G, Leventer RJ, Squier WM et al (2005) Periventricular nodular heterotopia with overlying polymicrogyria. Brain 128(Pt 12):2811–2821Google Scholar
  73. Wintermark P, Lechpammer M, Warfield SK et al (2013) Perfusion imaging of focal cortical dysplasia using Arterial Spin Labeling: correlation with histopathological vascular density. J Child Neurol 28(11):1474–1482PubMedCrossRefGoogle Scholar
  74. Wolf RL, Alsop DC, Levy-Teis I et al (2001) Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 22(7):1334–1341PubMedGoogle Scholar
  75. Wu J, Tarabishy B, Hu J et al (2011) Cortical calcification in Sturge-Weber syndrome on MRI-SWI: relation to brain perfusion status and seizure severity. J Magn Reson Imaging 34(4):791–798PubMedCentralPubMedCrossRefGoogle Scholar
  76. Wyllie E, Rothner AD, Luders H (1989) Partial seizures in children. Clinical features, medical treatment, and surgical considerations. Pediatr Clin North Am 36:343–364PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. Caranci
    • 1
    Email author
  • F. D’Arco
    • 1
  • A. D’Amico
    • 1
  • C. Russo
    • 1
  • F. Briganti
    • 1
  • M. Quarantelli
    • 2
  • E. Tedeschi
    • 1
  1. 1.Department of Advanced Biomedical Sciences, Neuroradiology UnitFederico II UniversityNaplesItaly
  2. 2.Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly

Personalised recommendations