Skip to main content

Breaking and Fixing Cryptophia’s Short Combiner

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8813))

Abstract

A combiner is a construction formed out of two hash functions that is secure if one of the underlying functions is. Conventional combiners are known not to support short outputs: if the hash functions have n-bit outputs the combiner should have at least almost 2n bits of output in order to be robust for collision resistance (Pietrzak, CRYPTO 2008). Mittelbach (ACNS 2013) introduced a relaxed security model for combiners and presented “Cryptophia’s short combiner,” a rather delicate construction of an n-bit combiner that achieves optimal collision, preimage, and second preimage security. We re-analyze Cryptophia’s combiner and show that a collision can be found in two queries and a second preimage in one query, invalidating the claimed results. We additionally propose a way to fix the design in order to re-establish the original security results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73. ACM, New York (1993)

    Google Scholar 

  3. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resistant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 570–583. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Canetti, R., Rivest, R., Sudan, M., Trevisan, L., Vadhan, S.P., Wee, H.M.: Amplifying collision resistance: A complexity-theoretic treatment. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 264–283. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Dierks, T., Allen, C.: The TLS protocol version 1.0. Request for Comments (RFC) 2246 (January 1999), http://tools.ietf.org/html/rfc2246

  7. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.1. Request for Comments (RFC) 4346 (April 2006), http://tools.ietf.org/html/rfc4346

  8. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2. Request for Comments (RFC) 5246 (August 2008), http://tools.ietf.org/html/rfc5246

  9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal of Computing 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–243. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash functions revisited. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 655–666. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash functions. Journal of Cryptology 27(3), 397–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischlin, M., Lehmann, A., Wagner, D.: Hash function combiners in TLS and SSL. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 268–283. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version 3.0. Request for Comments (RFC) 6101 (August 2011), http://tools.ietf.org/html/rfc6101

  16. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Hoch, J.J., Shamir, A.: Breaking the ICE - finding multicollisions in iterated concatenated and expanded (ICE) hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Hoch, J., Shamir, A.: On the strength of the concatenated hash combiner when all the hash functions are weak. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 616–630. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Joux, A.: Multicollisions in iterated hash functions. application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Lehmann, A.: On the Security of Hash Function Combiners. Ph.D. thesis, Technischen Universität Darmstadt, Darmstadt (2010)

    Google Scholar 

  23. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Mendel, F., Rechberger, C., Schläffer, M.: MD5 is weaker than weak: Attacks on concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 144–161. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Mittelbach, A.: Hash combiners for second pre-image resistance, target collision resistance and pre-image resistance have long output. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 522–539. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Mittelbach, A.: Cryptophia’s short combiner for collision-resistant hash functions. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 136–153. Springer, Heidelberg (2013), Full version: Cryptology ePrint Archive, Report 2013/210

    Chapter  Google Scholar 

  27. Nandi, M., Stinson, D.: Multicollision attacks on generalized hash functions. Cryptology ePrint Archive, Report 2004/330 (2004)

    Google Scholar 

  28. Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 23–33. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Pietrzak, K.: Compression from collisions, or why CRHF combiners have a long output. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 413–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Reyzin, L.: Some notions of entropy for cryptography - (invited talk). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 138–142. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Rjaško, M.: On existence of robust combiners for cryptographic hash functions. In: Conference on Theory and Practice of Information Technologies - ITAT 2009. CEUR Workshop Proceedings, vol. 584, pp. 71–76 (2009)

    Google Scholar 

  32. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mennink, B., Preneel, B. (2014). Breaking and Fixing Cryptophia’s Short Combiner. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds) Cryptology and Network Security. CANS 2014. Lecture Notes in Computer Science, vol 8813. Springer, Cham. https://doi.org/10.1007/978-3-319-12280-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12280-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12279-3

  • Online ISBN: 978-3-319-12280-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics