Business Intelligence and Big Data in the Cloud: Opportunities for Design-Science Researchers

  • Odette Mwilu Sangupamba
  • Nicolas Prat
  • Isabelle Comyn-Wattiau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8823)


Cloud computing and big data offer new opportunities for business intelligence (BI) and analytics. However, traditional techniques, models, and methods must be redefined to provide decision makers with service of data analysis through the cloud and from big data. This situation creates opportunities for research and more specifically for design-science research. In this paper, we propose a typology of artifacts potentially produced by researchers in design science. Then, we analyze the state of the art through this typology. Finally, we use the typology to sketch opportunities of new research to improve BI and analytics capabilities in the cloud and from big data.


Business Intelligence Big Data Analytics Cloud Computing Design- Science Research Artifact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IDC: Worldwide Business Analytics Software 2013-2017 Forecast and, Vendor Shares (2012),
  2. 2.
    Cuzzocrea, A., Song, I.-Y., Davis, K.C.: Analytics over Large-Scale Multidimensional Data: the Big Data Revolution! In: Proceedings of DOLAP 2011, pp. 101–104. ACM Press (2011)Google Scholar
  3. 3.
    Pring, B., Brown, R.H., Leong, L., Biscotti, F., Couture, A.W., Lheureux, B.J., Liu, V.K.: Forecast: Public Cloud Services, Worldwide and Regions, Industry Sectors. 2009-2014. Gartner Report (2010)Google Scholar
  4. 4.
  5. 5.
    March, S., Smith, G.: Design and Natural Science Research on Information Technology. Decision Support Systems 15(4), 251–266 (1995)CrossRefGoogle Scholar
  6. 6.
    Hevner, A., Ram, S., March, S., Park, J.: Design Science in Information Systems Research. MIS Quarterly 28(1), 75–105 (2004)Google Scholar
  7. 7.
    Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of Embedded Systems: Formal Models, Validation, and Synthesis. Proceedings of the IEEE 85(3), 366–390 (1997)CrossRefGoogle Scholar
  8. 8.
    Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact Types in Information Systems Design Science-a Literature Review. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 77–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  10. 10.
    Nickerson, R.C., Varshney, U., Muntermann, J.: A Method for Taxonomy Development and its Application in Information Systems. European Journal of Information Systems 22(3), 336–359 (2013)CrossRefGoogle Scholar
  11. 11.
    CIO Council: Federal Enterprise Architecture Framework, version 1.1., Chief Information Officers Council, Washington D.C., USA (1999) Google Scholar
  12. 12.
    ISO/IEC, IEEE: Systems and Software Engineering – Vocabulary, standard ISO/IEC/IEEE 24765:2010(E) (2010) Google Scholar
  13. 13.
    Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.: The Brave New World of Design Requirements. Information Systems 36(7), 992–1008 (2011)CrossRefGoogle Scholar
  14. 14.
    Nunamaker Jr., J.F., Briggs, R.O., De Vreede, G.-J., Sprague Jr., R.H.: Special Issue: Enhancing Organizations’ Intellectual Bandwidth: The Quest for Fast and Effective Value Creation. Journal of Management Information Systems 17(3), 3–8 (2000)Google Scholar
  15. 15.
    Hanseth, O., Lyytinen, K.: Design Theory for Dynamic Complexity in Information Infrastructures: the Case of Building Internet. Journal of Information Technology 25(1), 1–19 (2010)CrossRefGoogle Scholar
  16. 16.
    Kornyshova, E., Deneckère, R., Salinesi, C.: Method Chunks Selection by Multicriteria Techniques: an Extension of the Assembly Based Approach. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals and Experiences. IFIP, vol. 244, pp. 64–78. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Purao, S., Vaishnavi, V.: Product Metrics for Object-Oriented Systems. ACM Computing Surveys 35(2), 191–221 (2003)CrossRefGoogle Scholar
  18. 18.
    Abadi, D.J.: Data Management in the Cloud: Limitations and Opportunities. IEEE Data Engineering Bulletin 32(1), 3–12 (2009)Google Scholar
  19. 19.
    Bizer, C., Boncz, P., Brodie, M.L., Erling, O.: The Meaningful Use of Big Data: Four Perspectives-Four Challenges. ACM SIGMOD Record 40(4), 56–60 (2011)CrossRefGoogle Scholar
  20. 20.
    Chen, H., Chiang, R.H., Storey, V.C.: Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly 36(4), 1165–1188 (2012)Google Scholar
  21. 21.
    Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: A Self-Tuning System for Big Data Analytics. In: Proceedings of CIDR, pp. 261–272 (2011)Google Scholar
  22. 22.
    Pedersen, T.B., Pedersen, D., Riis, K.: On-Demand Multidimensional Data Integration: Toward a Semantic Foundation for Cloud Intelligence. The Journal of Super Computing 65(1), 217–257 (2013)CrossRefGoogle Scholar
  23. 23.
    d’Orazio, L., Bimonte, S.: Multidimensional Arrays for Warehousing Data on Clouds. In: Hameurlain, A., Morvan, F., Tjoa, A.M. (eds.) Globe 2010. LNCS, vol. 6265, pp. 26–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Chaudhuri, S., Dayal, U., Narasayya, V.: An overview of Business Intelligence Technology. Communications of the ACM 54(8), 88–98 (2011)CrossRefGoogle Scholar
  25. 25.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  26. 26.
    Baars, H., Kemper, H.G.: Business Intelligence in the Cloud? In: Proceedings of PACIS 2010. Association for Information Systems, Paper 145 (2010)Google Scholar
  27. 27.
    Fernández, A., del Río, S., Herrera, F., Benítez, J.M.: An Overview on the Structure and Applications for Business Intelligence and Data Mining in Cloud Computing. In: Uden, L., Herrera, F., Bajo, J., Corchado, J.M. (eds.) 7th International Conference on KMO. AISC, vol. 172, pp. 559–570. Springer, Heidelberg (2013)Google Scholar
  28. 28.
    Hoberg, P., Wollersheim, J., Krcmar, H.: The Business Perspective on Cloud Computing - A Literature Review of Research on Cloud Computing. In: Proceedings of AMCIS 2012, Association for Information Systems, Paper 5 (2012)Google Scholar
  29. 29.
    Demirkan, H., Delen, D.: Leveraging the Capabilities of Service-Oriented Decision Support Systems: Putting Analytics and Big Data in Cloud. Decision Support Systems 55(1), 412–421 (2013)CrossRefGoogle Scholar
  30. 30.
    Chaudhuri, S.: What Next? A Half-Dozen Data Management Research Goals for Big Data and the Cloud. In: Proceedings of PODS 2012, pp. 1–4. ACM Press, New York (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Odette Mwilu Sangupamba
    • 1
  • Nicolas Prat
    • 2
  • Isabelle Comyn-Wattiau
    • 1
    • 2
  1. 1.CEDRIC-CNAMParisFrance
  2. 2.ESSEC Business SchoolCergy-PontoiseFrance

Personalised recommendations