Lagrangian Xgraphs: A Logical Data-Model for Spatio-Temporal Network Data: A Summary

  • Venkata M. V. Gunturi
  • Shashi Shekhar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8823)


Given emerging diverse spatio temporal network (STN) datasets, e.g., GPS tracks, temporally detailed roadmaps and traffic signal data, the aim is to develop a logical data-model which achieves a seamless integration of these datasets for diverse use-cases (queries) and supports efficient algorithms. This problem is important for travel itinerary comparison and navigation applications. However, this is challenging due to the conflicting requirements of expressive power and computational efficiency as well as the need to support ever more diverse STN datasets, which now record non-decomposable properties of n-ary relations. Examples include travel-time and fuel-use during a journey on a route with a sequence of coordinated traffic signals and turn delays. Current data models for STN datasets are limited to representing properties of only binary relations, e.g., distance on individual road segments. In contrast, the proposed logical data-model, Lagrangian Xgraphs can express properties of both binary and n-ary relations. Our initial study shows that Lagrangian Xgraphs are more convenient for representing diverse STN datasets and comparing candidate travel itineraries.


Road Segment Transportation Network Deterministic Property Loop Detector Abstract Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shekhar, S., Gunturi, V., Evans, M.R., Yang, K.: Spatial big-data challenges intersecting mobility and cloud computing. In: MobiDE, pp. 1–6. ACM (2012)Google Scholar
  2. 2.
    Liu, H., Hu, H.: Smart-signal phase ii: Arterial offset optimization using archived high-resolution traffic signal data. Technical Report CTS 13-19, Intel. Trans. Sys. Inst., Center for Transportation Studies, Univ. of Minnesota (April 2013)Google Scholar
  3. 3.
    Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: Proc. of the SIGSPATIAL, pp. 99–108. ACM (2010)Google Scholar
  4. 4.
    Manyika, J., et al.: Big data: The next frontier for innovation, competition and productivity. McKinsey Global Institute (May 2011),
  5. 5.
    Lovell, J.: Left-hand-turn elimination. NY Times (December 9, 2007)Google Scholar
  6. 6.
    Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: A case for time-dependent shortest path computation in spatial networks. In: Proc. SIGSPATIAL. ACM (2010)Google Scholar
  7. 7.
    Koonce, P., et al.: Traffic signal timing manual. Technical Report FHWA-HOP-08-024, US Dept of Trans. Federal Higway Admin. (June 2008)Google Scholar
  8. 8.
    George, B., Shekhar, S.: Time-aggregated graphs for modelling spatio-temporal networks. J. Semantics of Data XI 191 (2007)Google Scholar
  9. 9.
    Köhler, E., Langkau, K., Skutella, M.: Time-expanded graphs for flow-dependent transit times. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 599–611. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Hoel, E.G., Heng, W.-L., Honeycutt, D.: High performance multimodal networks. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 308–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Güting, R.H.: Graphdb: Modeling and querying graphs in databases. In: Proc. of the 20th International Conference on Very Large Data Bases, pp. 297–308 (1994)Google Scholar
  12. 12.
    Zheng, Y., Zhou, X.E. (eds.): Computing with Spatial Trajectories. Springer (2011)Google Scholar
  13. 13.
    Shashi: Spatial pictogram enhanced conceptual data models and their translation to logical data models. In: Intl. Works. on Integrated Spatial Databases, Digital Inages and GIS, pp. 77–104. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Bedard, Y.: Visual modeling of spatial databases: Towards spatial PVL and UML. Geoinformatica 53(2) (1999)Google Scholar
  15. 15.
    Shekhar, S., et al.: Data models in geographic information systems. Commun. ACM 40(4) (April 1997)Google Scholar
  16. 16.
    Batchelor, G.: An introduction to fluid dynamics. Cambridge Univ. Press (1973)Google Scholar
  17. 17.
    Gunturi, V.M.V., Nunes, E., Yang, K., Shekhar, S.: A critical-time-point approach to all-start-time lagrangian shortest paths: A summary of results. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 74–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Parent, C., et al.: Spatio-temporal conceptual models: Data structures + space + time. In: Proc. of the Intl. Symp. on Adv. in GIS, pp. 26–33. ACM (1999) Google Scholar
  19. 19.
    Tøssebro, E., Nygård, M.: Representing topological relationships for spatiotemporal objects. GeoInformatica 15(4), 633–661 (2011)CrossRefGoogle Scholar
  20. 20.
    Fileto, R., Krüger, M., Pelekis, N., Theodoridis, Y., Renso, C.: Baquara: A holistic ontological framework for movement analysis using linked data. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 342–355. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Elsevier, Discrete applied mathematics 42(2), 177–201 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Venkata M. V. Gunturi
    • 1
  • Shashi Shekhar
    • 1
  1. 1.Dept of Computer Science & EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations