Towards a Qualitative Representation of Movement

  • Jing Wu
  • Christophe Claramunt
  • Min Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8823)


Over the past few years there have been several attempts to model and represent the spatial and temporal properties of moving entities. Several semantic and computational frameworks have been developed to track and analyze moving object trajectories, but there is still a need for a qualitative reasoning support at the abstract level. The research presented in this paper introduces a qualitative approach for representing and reasoning about moving entities. The model combines topological relations with qualitative distances over a spatial and temporal framework. Several basic movement configurations over dynamic entities are identified as well as movement transitions.


Movement topological relations qualitative distances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raffaeta, A., Ceccarelli, T., Centeno, D., Giannotti, F., Massolo, A., Parent, C., Renso, C., Spaccapietra, S., Turini, F.: An Application of Advanced Spatio-Temporal Formalisms to Behavioural Ecology. GeoInformatica 12, 37–72 (2008)CrossRefGoogle Scholar
  2. 2.
    González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding Individual Human Mobility Patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  3. 3.
    Mouza, C., Rigaux, P.: Mobility Patterns. GeoInformatica 9, 297–319 (2005)CrossRefGoogle Scholar
  4. 4.
    Sinha, G., Mark, D.M.: Measuring Similarity between Geospatial Lifelines in Studies of Environmental Health. Journal of Geographical Systems 7, 115–136 (2005)CrossRefGoogle Scholar
  5. 5.
    Peuquet, D.J.: It’s about Time: A Conceptual Framework for the Representation of Tem-poral Dynamics in Geographic Information Systems. Annals of the Association of Ameri-can Geographers 84, 441–461 (1994)CrossRefGoogle Scholar
  6. 6.
    Yuan, M.: Representing Complex Geographic Phenomena in GIS. Cartography and Geo-graphic Information Science 28, 83–96 (2001)CrossRefGoogle Scholar
  7. 7.
    Galton, A.: Towards a Qualitative Theory of Movement. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 377–396. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)Google Scholar
  9. 9.
    Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic Based on Regions and Connection. In: Proceedings of the Third International Conference on Knowledge Representation and Reasoning, pp. 165–176. Cambridge, Massachusetts (1992)Google Scholar
  10. 10.
    Stewart Hornsby, K., Li, N.: Conceptual Framework for Modeling Dynamic Paths from Natural Language Expressions. Transactions in GIS 13(s1), 27–45 (2009)CrossRefGoogle Scholar
  11. 11.
    Pustejovsky, J., Moszkowicz, J.L.: The Qualitative Spatial Dynamics of Motion in Lan-guage. Spatial Cognition & Computation 11, 15–44 (2011)CrossRefGoogle Scholar
  12. 12.
    Kurata, Y., Egenhofer, M.: The 9+-Intersection for Topological Relations between a Di-rected Line Segment and a Region. In: Gottfried, B. (ed.) 1st Workshop on Behavioral Monitoring and Interpretation, TZI-Bericht, vol. 42, pp. 62–76. Technogie-Zentrum Informatik, Universität Bremen (2007)Google Scholar
  13. 13.
    Egenhofer, M., Franzosa, R.: Point-set Topological Spatial Relations. International Journal of Geographical Information Science 5, 161–174 (1991)CrossRefGoogle Scholar
  14. 14.
    Shi, H., Kurata, Y.: Modeling Ontological Concepts of Motions with Two Projection-Based Spatial Models. In: 2nd International Workshop on Behavioral Monitoring and Interpretation, vol. 396, pp. 42–56. Kaiserslautern, Germany (2008)Google Scholar
  15. 15.
    Van de Weghe, N.: Representing and Reasoning about Moving Objects: A Qualitative Approach. Phd thesis, Ghent University, Belgium (2004)Google Scholar
  16. 16.
    Noyon, V., Claramunt, C., Devogele, D.: A Relative Representation of Trajectories in Geographical Spaces. Geoinformatica 11, 479–496 (2007)CrossRefGoogle Scholar
  17. 17.
    Muller, P.: A Qualitative Theory of Motion Based on Spatio-Temporal Primitives. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning, pp. 131–141. Morgan Kaufmann, San Francisco (1998)Google Scholar
  18. 18.
    Gottfried, B.: Interpreting Motion Events of Pairs of Moving Objects. GeoInformatica 15, 247–271 (2011)CrossRefGoogle Scholar
  19. 19.
    Praing, R., Schneider, M.: Modeling historical and future spatio-temporal relationships of moving objects in databases. In: Proceedings of the 16th ACM Conference on Information and Knowledge Management, Lisbon, Portugal, pp. 183–192 (2007)Google Scholar
  20. 20.
    Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26, 832–843 (1983)CrossRefzbMATHGoogle Scholar
  21. 21.
    Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence 54, 199–227 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jing Wu
    • 1
    • 2
  • Christophe Claramunt
    • 2
  • Min Deng
    • 1
  1. 1.Department of Geo-InformaticsCentral South UniversityChangshaChina
  2. 2.Naval Academy Research InstituteLanvéoc-PoulmicBrest NavalFrance

Personalised recommendations