Advertisement

A Superstructure for Models of Quality

  • David W. Embley
  • Stephen W. Liddle
  • Scott N. Woodfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8823)

Abstract

With additional quality modeling features added to conceptual models, computers could play a greater role in ensuring a higher level of quality in the information we model. For information-discovery applications, these additional conceptual modeling features should automatically accommodate certainty and conflicting information, support evidence-based research, automate collaboration, and provide research guidance. To address these issues, we propose a superstructure that adds four additional abstraction layers to typical conceptual models: a knowledge layer, an evidence layer, a communication layer, and an action layer. We show by a running example the benefits these abstraction layers provide for increasing the quality of the information being modeled.

Keywords

Conceptual modeling continuum abstraction hierarchy for conceptual modeling evidence-based conceptual modeling information-discovery applications automated collaboration research guidance uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meadow, C.T.: Text Information Retrieval Systems. Academic Press, Orlando (1992)Google Scholar
  2. 2.
    Zins, C.: Conceptual approaches for defining data, information, and knowledge. Journal of the American Society for Information Science and Technology 58(4) (February 2007)Google Scholar
  3. 3.
    Rowley, J.: The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science 33 (2007)Google Scholar
  4. 4.
    Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng, Y.-K., Smith, R.D.: Conceptual-model-based data extraction from multiple-record web pages. Data & Knowledge Engineering 31(3), 227–251 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Liddle, S.W.: Object-Oriented Systems Implementation: A Model-Equivalent Approach. PhD thesis, Department of Computer Science, Brigham Young University, Provo, Utah (June 1995)Google Scholar
  6. 6.
    Embley, D.W., Kurtz, B.D., Woodfield, S.N.: Object-oriented Systems Analysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 36(25), 34–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Jackson, R.B.: Object-Oriented Requirements Specification: A Model, A Tool and a Technique. PhD thesis, Brigham Young University (1994)Google Scholar
  9. 9.
    Park, J.S., Embley, D.W.: Extracting and organizing facts of interest from OCRed historical documents. In: Proceedings of the 13th Annual Family History Technology Workshop, Salt Lake City, Utah, USA (March 2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David W. Embley
    • 1
  • Stephen W. Liddle
    • 2
  • Scott N. Woodfield
    • 1
  1. 1.Department of Computer ScienceBrigham Young UniversityProvoUSA
  2. 2.Information Systems DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations