Skip to main content

Role of Osteopontin in Tumor Microenvironment: A New Paradigm in Cancer Therapy

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

Cancer is a complex, multifactorial disease, emerged due to dysregulation of one or more cellular signaling cascades by somatic or germ line mutations. However, tumor progression vastly depends on context-dependent interaction between cancer cells and its surrounding microenvironment. Tumor microenvironment plays multifaceted role in tumor progression by providing not only a structural framework but also proliferative, metastatic, and angiogenic signals. It is well established that array of growth factors, cytokines, and chemokines acts at the interface of tumor and stromal cells. Osteopontin (OPN), a chemokine-like protein, is overexpressed in various tumor tissues and cell lines. It has immense potential to regulate various hallmarks of cancer. Presumably, targeting the communication between the tumor cells and surrounding microenvironment using specific antibodies, small molecule inhibitors, and chemotherapeutic agents by exploiting OPN as a central molecule are novel therapeutic strategies for management of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed M, Kundu GC (2010) Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-kappaB dependent AP-1-mediated ICAM-1 expression in breast cancer cells. Mol Cancer 9:101

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderberg C, Li H, Fredriksson L et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69:369–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandopadhyay M, Bulbule A, Butti R et al (2014) Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets 18:883–895

    Article  CAS  PubMed  Google Scholar 

  • Beausoleil MS, Schulze EB, Goodale D et al (2011) Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorigenicity, and metastasis. BMC Cancer 11:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown LF, Papadopoulos-Sergiou A, Berse B et al (1994) Osteopontin expression and distribution in human carcinomas. Am J Pathol 145:610–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty G, Jain S, Behera R et al (2006) The multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis. Curr Mol Med 6:819–830

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty G, Jain S, Kundu GC (2008) Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68:152–161

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Huo DH, Kuang DM et al (2007) Human macrophages promote the motility and invasiveness of osteopontin-knockdown tumor cells. Cancer Res 67:5141–5147

    Article  CAS  PubMed  Google Scholar 

  • Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowden Dahl KD, Robertson SE, Weaver VM et al (2005) Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Mol Biol Cell 16:1901–1912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denhardt DT, Noda M, O’Regan AW et al (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fedarko NS, Jain A, Karadag A et al (2001) Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 7:4060–4066

    CAS  PubMed  Google Scholar 

  • Giachelli CM, Lombardi D, Johnson RJ et al (1998) Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol 152:353–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gimba ER, Tilli TM (2013) Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett 331:11–17

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Lu Z, Fang G (2008) A small interfering RNA targeting osteopontin as gastric cancer therapeutics. Cancer Lett 272:148–159

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Cai CQ, Schroeder RA et al (2001) Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. J Immunol 106:1079–1086

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • He B, Mirza M, Weber GF (2006) An osteopontin splice variant induces anchorage independence in human breast cancer cells. Oncogene 25:2192–2202

    Article  CAS  PubMed  Google Scholar 

  • Hedley BD, Welch DR, Allan AL et al (2008) Downregulation of osteopontin contributes to metastasis suppression by breast cancer metastasis suppressor 1. Int J Cancer 123:526–534

    Article  CAS  PubMed  Google Scholar 

  • Hsu HP, Shan YS, Lai MD et al (2010) Osteopontin-positive infiltrating tumor-associated macrophages in bulky ampullary cancer predict survival. Cancer Biol Ther 10:144–154

    Article  CAS  PubMed  Google Scholar 

  • Kale S, Raja R, Thorat D et al (2014) Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene 33:2295–2306

    Article  CAS  PubMed  Google Scholar 

  • Kidd S, Spaeth E, Dembinski JL et al (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27:2614–2623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koh BI, Kang Y (2012) The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. EMBO Rep 13:412–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Patil HS, Sharma P et al (2012) Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway. Curr Mol Med 12:952–966

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sharma P, Kumar D et al (2013) Functional characterization of stromal osteopontin in melanoma progression and metastasis. PLoS One 8:e69116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2006) Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25:323–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenga Y, Koh A, Perera AS et al (2008) Osteopontin expression is required for myofibroblast differentiation. Circ Res 102:319–327

    Article  CAS  PubMed  Google Scholar 

  • Ling LJ, Wang S, Liu XA et al (2008) A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24–/lower phenotype metastasis to human bone. Chin Med J (Engl) 121:1980–1986

    CAS  Google Scholar 

  • Loebinger MR, Kyrtatos PG, Turmaine M et al (2009) Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 69:8862–8867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor- associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • McAllister SS, Gifford AM, Greiner AL et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mi Z, Oliver T, Guo H et al (2007) Thrombin-cleaved COOH(-) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Res 67:4088–4097

    Article  CAS  PubMed  Google Scholar 

  • Mi Z, Bhattacharya SD, Kim VM et al (2011) Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 32:477–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mirza M, Shaughnessy E, Hurley JK et al (2008) Osteopontin-c is a selective marker of breast cancer. Int J Cancer 122:889–897

    Article  CAS  PubMed  Google Scholar 

  • Ohyama Y, Nemoto H, Rittling S et al (2004) Osteopontin-deficiency suppresses growth of B16 melanoma cells implanted in bone and osteoclastogenesis in co-cultures. J Bone Miner Res 19:1706–1711

    Article  CAS  PubMed  Google Scholar 

  • Pazolli E, Luo X, Brehm S et al (2009) Senescent stromal-derived osteopontin promotes preneoplastic cell growth. Cancer Res 69:1230–1239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pietras A, Katz AM, Ekström EJ et al (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357–369

    Article  CAS  PubMed  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raja R, Kale S, Thorat D et al (2014) Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1α-mediated VEGF-dependent angiogenesis. Oncogene 33:2053–2064

    Article  CAS  PubMed  Google Scholar 

  • Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signalling and cancer progression. Trends Cell Biol 16:79–87

    Article  CAS  PubMed  Google Scholar 

  • Rao G, Wang H, Li B et al (2013a) Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clin Cancer Res 19:785–797

    Article  CAS  PubMed  Google Scholar 

  • Rao G, Du L, Chen Q (2013b) Osteopontin, a possible modulator of cancer stem cells and their malignant niche. Oncoimmunology 2:e24169

    Article  PubMed Central  PubMed  Google Scholar 

  • Senger DR, Ledbetter SR, Claffey KP (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149:293–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma P, Kumar S, Kundu GC (2010) Transcriptional regulation of human osteopontin promoter by histone deacetylase inhibitor, trichostatin A in cervical cancer cells. Mol Cancer 9:178

    Article  PubMed Central  PubMed  Google Scholar 

  • Shojaei F, Scott N, Kang X (2012) Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer. J Exp Clin Cancer Res 31:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solinas G, Schiarea S, Liguori M et al (2010) Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 185:642–652

    Article  CAS  PubMed  Google Scholar 

  • Spaeth EL, Dembinski JL, Sasser AK et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4:e4992

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang X, Li J, Yu B et al (2013) Osteopontin splice variants differentially exert clinicopathological features and biological functions in gastric cancer. Int J Biol Sci 9:55–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tchou J, Conejo-Garcia J (2012) Targeting the tumor stroma as a novel treatment strategy for breast cancer: shifting from the neoplastic cell-centric to a stroma-centric paradigm. Adv Pharmacol 65:45–61

    Article  CAS  PubMed  Google Scholar 

  • Todaro M, Gaggianesi M, Catalano V et al (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14:342–356

    Article  CAS  PubMed  Google Scholar 

  • Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345

    Article  CAS  PubMed  Google Scholar 

  • Wels J, Kaplan RN, Rafii S et al (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu BJ, Yan W, Jovanovic B et al (2010) Microdialysis combined with proteomics for protein identification in breast tumor microenvironment in vivo. Cancer Microenviron 13:61–71

    Google Scholar 

  • Yang J, Richmond A (2001) Constitutive IKappaB kinase activity correlates with nuclear factor-KappaB activation in human melanoma cells. Cancer Res 61:4901–4909

    CAS  PubMed  Google Scholar 

  • Yang L, Zhao W, Zuo WS et al (2012a) Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor. Chin Med J (Engl) 125:293–299

    CAS  Google Scholar 

  • Yang L, Wei L, Zhao W et al (2012b) Down-regulation of osteopontin expression by RNA interference affects cell proliferation and chemotherapy sensitivity of breast cancer MDA-MB-231 cells. Mol Med Rep 5:373–376

    CAS  PubMed  Google Scholar 

  • Young MF, Kerr JM, Termine JD et al (1990) cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin(OPN). Genomics 7:491–502

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Lee YW, Rui YF et al (2013) Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 4:70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao B, Sun T, Meng F et al (2011) Osteopontin as a potential biomarker of proliferation and invasiveness for lung cancer. J Cancer Res Clin Oncol 137:1061–1070

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author’s research is supported in part by Department of Biotechnology, Department of Science and Technology, and Council of Scientific and Industrial Research, Government of India. We apologize to the many authors whose contributions we could not cite because of limitation of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal C. Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Butti, R., Ghosh, P., Totakura, K.V.S., Venkata, R.N.N., Nimma, R., Kundu, G.C. (2015). Role of Osteopontin in Tumor Microenvironment: A New Paradigm in Cancer Therapy. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_6

Download citation

Publish with us

Policies and ethics