Skip to main content

Tumor-Associated Macrophages in Tumor Progression: From Bench to Bedside

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

Cancer-related inflammation is known to be a key determinant in cancer behavior, playing a pivotal role in cancer initiation and progression. Tumor-associated macrophages (TAM) represent the major leukocyte population among the tumor-infiltrating immune cells and display important and peculiar features. Within the tumor microenvironment, TAM may modulate their phenotype in response to distinct signals, resulting in a strict relationship with tumor cells. This plasticity confers the capability to change their behavior and reprogram their functions according to physiological or pathological situations. From a simplistic point of view, macrophages may be classified in M1 classical and M2 alternative macrophages, the latter displaying an immunomodulatory phenotype. M1 and M2 macrophages take part in different processes, such as resistance against pathogens and antitumor immunity or defense against parasites and resolution of inflammation, respectively. However, in addition to these, a number of functional diverse polarization states have been described. Several evidences indicate that in many tumors, macrophages display phenotypic and functional aspects that resemble M2 cells, which overall promote tumor initiation and progression. However, heterogeneity exists among TAM. In this scenario, TAM represent a possible target to improve anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64(15):5378–5384

    Article  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  • Algars A, Irjala H, Vaittinen S, Huhtinen H, Sundstrom J, Salmi M, Ristamaki R, Jalkanen S (2012) Type and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. Int J Cancer 131(4):864–873. doi:10.1002/ijc.26457

    Article  PubMed  Google Scholar 

  • Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167(2):195–205. doi:10.1111/j.1365-2249.2011.04515.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali D, Mack M, Jung S, Keshet E (2013) On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med 210(12):2611–2625. doi:10.1084/jem.20120690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21(1):49–59. doi:10.1016/j.cytogfr.2009.11.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265. doi:10.1002/path.1027

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. doi:10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell metabolism 15(4):432–437. doi:10.1016/j.cmet.2011.11.013

  • Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122

    Article  CAS  PubMed  Google Scholar 

  • Bohrer LR, Schwertfeger KL (2012) Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner. Mol Cancer Res 10(10):1294–1305. doi:10.1158/1541-7786.MCR-12-0275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi:10.1038/nri1668

    Article  CAS  PubMed  Google Scholar 

  • Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JA, Tamagnone L, Mazzone M (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709. doi:10.1016/j.ccr.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Gilkes DM, Takano N, Semenza GL (2014) Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci U S A 111(20):E2120–E2129. doi:10.1073/pnas.1406655111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Qu QX, Shen Y, Mu CY, Zhu YB, Zhang XG, Huang JA (2012) Induced expression of B7-H4 on the surface of lung cancer cell by the tumor-associated macrophages: a potential mechanism of immune escape. Cancer Lett 317(1):99–105. doi:10.1016/j.canlet.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Shen Y, Qu QX, Chen XQ, Zhang XG, Huang JA (2013) Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp Cell Res 319(1):96–102. doi:10.1016/j.yexcr.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Cheng HC, Wang J, Wang SW, Tai HC, Lin CW, Tang CH (2014) Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget 5(6):1595–1608

    PubMed Central  PubMed  Google Scholar 

  • Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266. doi:10.1016/j.cell.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  • Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, Forghani R, Novobrantseva TI, Koteliansky V, Figueiredo JL, Chen JW, Anderson DG, Nahrendorf M, Swirski FK, Weissleder R, Pittet MJ (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109(7):2491–2496. doi:10.1073/pnas.1113744109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW, Kuswanto W, Rauch PJ, Chudnovskiy A, Iwamoto Y, Kohler R, Marinelli B, Gorbatov R, Wojtkiewicz G, Panizzi P, Mino-Kenudson M, Forghani R, Figueiredo JL, Chen JW, Xavier R, Swirski FK, Nahrendorf M, Weissleder R, Pittet MJ (2013) Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38(2):296–308. doi:10.1016/j.immuni.2012.10.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J, Kusmartsev S (2011) Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res 71(20):6400–6409. doi:10.1158/0008-5472.CAN-11-1261

    Article  CAS  PubMed  Google Scholar 

  • Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR (2011) A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol 41(8):2155–2164. doi:10.1002/eji.201141817

    Article  CAS  PubMed  Google Scholar 

  • De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S, Falini A, Guidotti LG, Galli R, Naldini L (2008) Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14(4):299–311. doi:10.1016/j.ccr.2008.09.004

    Article  PubMed  Google Scholar 

  • Denardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67. doi:10.1158/2159-8274.CD-10-0028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475. doi:10.1158/0008-5472.CAN-10-1439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P (2009) Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 125(2):367–373

    Article  CAS  PubMed  Google Scholar 

  • Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH, Klenotic PA, Cutler A, Asosingh K, Erzurum S, Anand-Apte B (2010) Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. Am J Pathol 176(1):496–503. doi:10.2353/ajpath.2010.080642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards JP, Emens LA (2010) The multikinase inhibitor sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE(2) in murine macrophages. Int Immunopharmacol 10(10):1220–1228. doi:10.1016/j.intimp.2010.07.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH, Wei LX (2014) Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. doi:10.1016/j.canlet.2014.05.008

    Google Scholar 

  • Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925. doi:10.1126/science.1252510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127(8):2031–2041. doi:10.1038/sj.jid.5700827

    Article  CAS  PubMed  Google Scholar 

  • Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S, Pasqualini F, Grosso F, Sanfilippo R, Casali PG, Gronchi A, Virdis E, Tarantino E, Pilotti S, Greco A, Nebuloni M, Galmarini CM, Tercero JC, Mantovani A, D’Incalci M, Allavena P (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70(6):2235–2244. doi:10.1158/0008-5472.CAN-09-2335

    Article  CAS  PubMed  Google Scholar 

  • Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M, Allavena P (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23(2):249–262. doi:10.1016/j.ccr.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114(5):623–633. doi:10.1172/JCI22087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gironella M, Calvo C, Fernandez A, Closa D, Iovanna JL, Rosello-Catafau J, Folch-Puy E (2013) Reg3beta deficiency impairs pancreatic tumor growth by skewing macrophage polarization. Cancer Res 73(18):5682–5694. doi:10.1158/0008-5472.CAN-12-3057

    Article  CAS  PubMed  Google Scholar 

  • Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255. doi:10.1101/gad.1874010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964. doi:10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  • Gorelik E, Wiltrout RH, Brunda MJ, Holden HT, Herberman RB (1982) Augmentation of metastasis formation by thioglycollate-elicited macrophages. Int J Cancer 29(5):575–581

    Article  CAS  PubMed  Google Scholar 

  • Granata F, Frattini A, Loffredo S, Staiano RI, Petraroli A, Ribatti D, Oslund R, Gelb MH, Lambeau G, Marone G, Triggiani M (2010) Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J Immunol 184(9):5232–5241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haegel H, Thioudellet C, Hallet R, Geist M, Menguy T, Le Pogam F, Marchand JB, Toh ML, Duong V, Calcei A, Settelen N, Preville X, Hennequi M, Grellier B, Ancian P, Rissanen J, Clayette P, Guillen C, Rooke R, Bonnefoy JY (2013) A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells. MAbs 5(5):736–747. doi:10.4161/mabs.25743

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332(6035):1284–1288. doi:10.1126/science.1204351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katara GK, Jaiswal MK, Kulshrestha A, Kolli B, Gilman-Sachs A, Beaman KD (2013) Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene. doi:10.1038/onc.2013.532

    PubMed  Google Scholar 

  • Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, Lackner A, Alvarez X, Ochoa A, Chen L, Zou W (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4):871–881. doi:10.1084/jem.20050930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, Sakoda M, Ueno S, Natsugoe S, Takao S (2011) Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167(2):e211–e219. doi:10.1016/j.jss.2009.05.026

    Article  PubMed  Google Scholar 

  • Li D, Wang X, Wu JL, Quan WQ, Ma L, Yang F, Wu KY, Wan HY (2013) Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro. PLoS One 8(2):e56616. doi:10.1371/journal.pone.0056616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM, Mueller MM (2012) Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. J Pathol 227(1):17–28. doi:10.1002/path.3989

    Article  CAS  PubMed  Google Scholar 

  • Luheshi N, Davies G, Poon E, Wiggins K, McCourt M, Legg J (2014) Th1 cytokines are more effective than Th2 cytokines at licensing anti-tumour functions in CD40-activated human macrophages in vitro. Eur J Immunol 44(1):162–172. doi:10.1002/eji.201343351

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Ming WJ, Balotta C, Abdeljalil B, Bottazzi B (1986) Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim Biophys Acta 865(1):59–67

    CAS  PubMed  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi:10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311

    Article  CAS  PubMed  Google Scholar 

  • Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70(14):5728–5739. doi:10.1158/0008-5472.CAN-09-4672

    Article  CAS  PubMed  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234. doi:10.1182/blood-2004-03-1109

    Article  CAS  PubMed  Google Scholar 

  • Nagakawa Y, Aoki T, Kasuya K, Tsuchida A, Koyanagi Y (2002) Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer. Pancreas 24(2):169–178

    Article  PubMed  Google Scholar 

  • Neyen C, Pluddemann A, Mukhopadhyay S, Maniati E, Bossard M, Gordon S, Hagemann T (2013) Macrophage scavenger receptor a promotes tumor progression in murine models of ovarian and pancreatic cancer. J Immunol. doi:10.4049/jimmunol.1203194

    PubMed Central  PubMed  Google Scholar 

  • Noel W, Raes G, Hassanzadeh Ghassabeh G, De Baetselier P, Beschin A (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol 20(3):126–133. doi:10.1016/j.pt.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  • Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S (2006) Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 66(8):4349–4356

    Article  CAS  PubMed  Google Scholar 

  • Pommier A, Audemard A, Durand A, Lengagne R, Delpoux A, Martin B, Douguet L, Le Campion A, Kato M, Avril MF, Auffray C, Lucas B, Prevost-Blondel A (2013) Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proc Natl Acad Sci U S A 110(32):13085–13090. doi:10.1073/pnas.1300314110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. doi:10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi:10.1038/nature10138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 308(1):232–246

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan M, Mathur SR, Mukhopadhyay A (2013) Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res 73(17):5360–5370. doi:10.1158/0008-5472.CAN-13-0896

    Article  CAS  PubMed  Google Scholar 

  • Reed JR, Stone MD, Beadnell TC, Ryu Y, Griffin TJ, Schwertfeger KL (2012) Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner. PLoS One 7(9):e45877. doi:10.1371/journal.pone.0045877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Ruttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. doi:10.1016/j.ccr.2014.05.016

    PubMed  Google Scholar 

  • Schmidt T, Carmeliet P (2010) Blood-vessel formation: bridges that guide and unite. Nature 465(7299):697–699. doi:10.1038/465697a

    Article  CAS  PubMed  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi:10.1172/JCI59643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P (2010) Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 185(1):642–652. doi:10.4049/jimmunol.1000413

    Article  CAS  PubMed  Google Scholar 

  • Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, Connors JM, Staudt LM, Chan WC, Gascoyne RD (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362(10):875–885. doi:10.1056/NEJMoa0905680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun T, Yang Y, Luo X, Cheng Y, Zhang M, Wang K, Ge C (2014) Inhibition of tumor angiogenesis by interferon-gamma by suppression of tumor-associated macrophage differentiation. Oncol Res 21(5):227–235. doi:10.3727/096504014X13890370410285

    Article  CAS  PubMed  Google Scholar 

  • Tymoszuk P, Evens H, Marzola V, Wachowicz K, Wasmer MH, Datta S, Muller-Holzner E, Fiegl H, Bock G, Rooijen NV, Theurl I, Doppler W (2014) In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors. Eur J Immunol. doi:10.1002/eji.201344304

    PubMed  Google Scholar 

  • Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66(10):5242–5250. doi:10.1158/0008-5472.CAN-05-4463

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S, Liu S, Qin Y, Chen H (2011) Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer 74(2):188–196. doi:10.1016/j.lungcan.2011.04.009

    Article  PubMed  Google Scholar 

  • Watari K, Shibata T, Kawahara A, Sata K, Nabeshima H, Shinoda A, Abe H, Azuma K, Murakami Y, Izumi H, Takahashi T, Kage M, Kuwano M, Ono M (2014) Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One 9(6):e99568. doi:10.1371/journal.pone.0099568

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B, Yi L, Wang QL, Jiang XF, Yang L, Zhang P, Qian C, Cui YH, Zhang X, Bian XW (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189(1):444–453. doi:10.4049/jimmunol.1103248

    Article  CAS  PubMed  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. doi:10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281. doi:10.1038/sj.bjc.6603240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Patel L, Pienta KJ (2010) CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 21(1):41–48. doi:10.1016/j.cytogfr.2009.11.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Sud S, Mizutani K, Gyetko MR, Pienta KJ (2011) Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia 13(1):23–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, Zhao YW, Wei YQ (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7(12):e50946. doi:10.1371/journal.pone.0050946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ, Zheng L (2012) Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol 188(3):1117–1124. doi:10.4049/jimmunol.1100164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Alberto Mantovani is supported by the Italian Ministry of Health and by ERC. Maria Rosaria Galdiero is supported by a fellowship from P.O.R. Campania FSE 2007–2013, Project “CREMe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Galdiero, M.R., Mantovani, A. (2015). Tumor-Associated Macrophages in Tumor Progression: From Bench to Bedside. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_5

Download citation

Publish with us

Policies and ethics