Skip to main content

Cervical Cancer Stem Cells and Their Association with Human Papillomavirus: Are They Ready as Anticancer Targets?

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

Despite well-established human papillomavirus (HPV)-mediated etiology of cervical cancer, it has remained a major cause of cancer-related mortality of women from developing countries. Factors that contribute to high mortality rate primarily include disease diagnosis in advanced stages and failure of conventional treatment offered to these patients resulting in tumor relapse. Cancer stem cells (CSCs), in spite of controversies on their existence, are emerging as important players that initiate and maintain the tumor phenotype, govern tumor relapse, and chemo-/radioresistance, and thus considered as main factor that decides the treatment outcome. Recent studies provide evidence not only for presence of CSCs but also involvement of stemness-related signaling pathways and transcription factors in cervical cancer tissues and cell lines. The investigations made till date, however, lack evidence demonstrating a direct involvement of HPV oncoprotein(s) in modulation of CSC properties, relative proportions, or stem cell signaling in tumor tissues. Available literature, however, does support the involvement of HPV in these events. In the present article, we attempt to collate available data that demonstrates presence of CSC in cervical cancer, specific markers used to derive cervical CSC, and explored possibility of a potential cross talk of HPV oncoproteins with CSC signaling particularly with the known self-renewal signaling pathways like Notch, Hedgehog (Hh), and Wnt as well as stemness-related transcription factor like Oct4, Nanog, Sox2, and STAT3 that maintain CSC phenotype and functionality. Overall, present article provides rationale for detailed investigation of HPV role in regulation of CSC in cervical tumor tissues for an effective targeting of refractory lesions and to prevent tumor relapse.

Grant Support

The study was supported by extramural and intramural research grants from Department Science and Technology (DST) and Indian Council of Medical Research (ICMR), Government of India, to ACB (IRIS2013-2762) and BCD Grant from CSIR-UGC to KV [F.2-2/2009 (SA-I)] and ICMR-Senior Research Fellowship to AT (No. 81/3/2009/BMS/Stem Cell).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH:

Aldehyde dehydrogenase

CSCs:

Cancer stem cells

Hh:

Hedgehog

HPV:

Human papillomavirus

HR:

High risk

SCJ:

Squamocolumnar junction

SP:

Side population

References

  • Abba MC, Laguens RM, Dulout FN, Golijow CD (2004) The c-myc activation in cervical carcinomas and HPV 16 infections. Mutat Res 557(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Abdullah LN, Chow EK (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2(1):3, doi:2001-1326-2-3 [pii]10.1186/2001-1326-2-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Al-Hajj M, Dontu G, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72, doi:274 [pii]

    PubMed  Google Scholar 

  • Bharti AC, Shukla S, Mahata S, Hedau S, Das BC (2009) Anti-human papillomavirus therapeutics: facts & future. Indian J Med Res 130(3):296–310

    CAS  PubMed  Google Scholar 

  • Bharti AC, Shukla S, Mahata S, Hedau S, Das BC (2010) Human papillomavirus and control of cervical cancer in India. Expert Rev Obstet Gynecol 5(3):329–346

    Article  Google Scholar 

  • Bortolomai I, Canevari S, Facetti I, De Cecco L, Castellano G, Zacchetti A, Alison MR, Miotti S (2010) Tumor initiating cells: development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle 9(6):1194–1206, doi:11108 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bose D, Zimmerman LJ, Pierobon M, Petricoin E, Tozzi F, Parikh A, Fan F, Dallas N, Xia L, Gaur P, Samuel S, Liebler DC, Ellis LM (2011) Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br J Cancer 105(11):1759–1767. doi:10.1038/bjc.2011.449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brehm A, Ohbo K, Zwerschke W, Botquin V, Jansen-Durr P, Scholer HR (1999) Synergism with germ line transcription factor Oct-4: viral oncoproteins share the ability to mimic a stem cell-specific activity. Mol Cell Biol 19(4):2635–2643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burghardt E, Baltzer J, Tulusan AH, Haas J (1992) Results of surgical treatment of 1028 cervical cancers studied with volumetry. Cancer 70(3):648–655

    Article  CAS  PubMed  Google Scholar 

  • Chaudary N, Pintilie M, Hedley D, Fyles AW, Milosevic M, Clarke B, Hill RP, Mackay H (2012) Hedgehog pathway signaling in cervical carcinoma and outcome after chemoradiation. Cancer 118(12):3105–3115. doi:10.1002/cncr.26635

    Article  CAS  PubMed  Google Scholar 

  • Cid Arregui A, Gariglio P, Kanda T, Doorbar J (2012) ONCOGENIC HUMAN PAPILLOMAVIRUSES: high-risk human papillomaviruses: towards a better understanding of the mechanisms of viral transformation, latency and immune-escape. Open Virol J 6:160–162. doi:10.2174/1874357901206010160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  CAS  PubMed  Google Scholar 

  • Crowder SW, Balikov DA, Hwang YS, Sung HJ (2014) Cancer stem cells under hypoxia as a chemoresistance factor in breast and brain. Curr Pathobiol Rep 2(1):33–40. doi:10.1007/s40139-013-0035-6

    Article  PubMed  Google Scholar 

  • da Silva-Diz V, Sole-Sanchez S, Valdes-Gutierrez A, Urpi M, Riba-Artes D, Penin RM, Pascual G, Gonzalez-Suarez E, Casanovas O, Vinals F, Paramio JM, Batlle E, Munoz P (2013) Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene 32(32):3732–3743. doi:10.1038/onc.2012.375

    Article  PubMed  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163, doi:0703478104 [pii]10.1073/pnas.0703478104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daniel B, Rangarajan A, Mukherjee G, Vallikad E, Krishna S (1997) The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J Gen Virol 78(Pt 5):1095–1101

    CAS  PubMed  Google Scholar 

  • Das BC, Hussain S, Nasare V, Bharadwaj M (2008) Prospects and prejudices of human papillomavirus vaccines in India. Vaccine 26(22):2669–2679. doi:10.1016/j.vaccine.2008.03.056

    Article  PubMed  Google Scholar 

  • de Bont ES, Guikema JE, Scherpen F, Meeuwsen T, Kamps WA, Vellenga E, Bos NA (2001) Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin’s lymphoma. Cancer Res 61(20):7654–7659

    PubMed  Google Scholar 

  • Delgado G, Bundy B, Zaino R, Sevin BU, Creasman WT, Major F (1990) Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol 38(3):352–357

    Article  CAS  PubMed  Google Scholar 

  • Dreesen O, Brivanlou AH (2007) Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, Wei H, Tian Z (2009) Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep 22(5):1129–1134

    CAS  PubMed  Google Scholar 

  • Flores ER, Allen-Hoffmann BL, Lee D, Sattler CA, Lambert PF (1999) Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 262(2):344–354. doi:10.1006/viro.1999.9868

    Article  CAS  PubMed  Google Scholar 

  • Gray GE, Mann RS, Mitsiadis E, Henrique D, Carcangiu ML, Banks A, Leiman J, Ward D, Ish-Horowitz D, Artavanis-Tsakonas S (1999) Human ligands of the Notch receptor. Am J Pathol 154(3):785–794. doi:10.1016/S0002-9440(10)65325-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu W, Yeo E, McMillan N, Yu C (2011) Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther 18(12):897–905. doi:10.1038/cgt.2011.58

    Article  CAS  PubMed  Google Scholar 

  • Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, Munger K, Feldman S, McKeon FD, Xian W, Crum CP (2012) A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A 109(26):10516–10521. doi:10.1073/pnas.1202684109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • IARC 2013, GLOBOCAN (2012) Estimated cancer incidence, mortality and prevalence worldwide in 2012 WHO. http://globocan.iarc.fr/Pages/fact_sheets_population.aspx. Accessed 30 Oct 2014

  • Isaacson Wechsler E, Wang Q, Roberts I, Pagliarulo E, Jackson D, Untersperger C, Coleman N, Griffin H, Doorbar J (2012) Reconstruction of human papillomavirus type 16-mediated early-stage neoplasia implicates E6/E7 deregulation and the loss of contact inhibition in neoplastic progression. J Virol 86(11):6358–6364. doi:10.1128/JVI.07069-11

  • Ji J, Zheng PS (2010) Expression of Sox2 in human cervical carcinogenesis. Hum Pathol 41(10):1438–1447. doi:10.1016/j.humpath.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  • Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16(5):837–847. doi:10.1089/scd.2007.0006

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101(3):781–786, doi:10.1073/pnas.03076181000307618100 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC Jr, Coleman RL, Lopez-Berestein G, Sood AK (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9(12):3186–3199. doi:10.1158/1535-7163.MCT-10-0563, [pii]10.1158/1535-7163.MCT-10-0563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhou BP (2011) Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 11:49, doi:1471-2407-11-49 [pii]10.1186/1471-2407-11-49

    Article  PubMed Central  PubMed  Google Scholar 

  • Li K, Gou S, Liu T, Wang C, Yin T, Yang M, Zhou J (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34(4):429–435, doi:10.1097/MPA.0b013e318033f9f400006676-200705000-00008 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ye F, Chen H, Lu W, Zhou C, Xie X (2007) Expression of differentiation associated protein Hes1 and Hes5 in cervical squamous carcinoma and its precursors. Int J Gynecol Cancer 17(6):1293–1299. doi:10.1111/j.1525-1438.2007.00930.x

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lu WG, Ye F, Cheng XD, Hong D, Hu Y, Chen HZ, Xie X (2010) Hes1/Hes5 gene inhibits differentiation via down-regulating Hash1 and promotes proliferation in cervical carcinoma cells. Int J Gynecol Cancer 20(7):1109–1116

    Article  PubMed  Google Scholar 

  • Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F (2011) Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol 32(5):941–950. doi:10.1007/s13277-011-0196-z

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhou P, Zhang L, Gong W, Huang G, Zheng Y, He F (2012a) HDAC1/DNMT3A-containing complex is associated with suppression of Oct4 in cervical cancer cells. Biochem Biokhimiia 77(8):934–940. doi:10.1134/S0006297912080159

    Article  CAS  Google Scholar 

  • Liu D, Zhou P, Zhang L, Zheng Y, He F (2012b) HPV16 activates the promoter of Oct4 gene by sequestering HDAC1 from repressor complex to target it to proteasomal degradation. Med Hypotheses 79(4):531–534. doi:10.1016/j.mehy.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Yang WT, Xu R, Liu JT, Zheng PS (2014) Cervical cancer cells with positive sox2 expression exhibit the properties of cancer stem cells. PLoS One 9(1):e87092. doi:10.1371/journal.pone.0087092

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopez J, Poitevin A, Mendoza-Martinez V, Perez-Plasencia C, Garcia-Carranca A (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12:48, doi:1471-2407-12-48 [pii]10.1186/1471-2407-12-48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martens JE, Arends J, Van der Linden PJ, De Boer BA, Helmerhorst TJ (2004) Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res 24(2B):771–775

    PubMed  Google Scholar 

  • Martens JE, Smedts FM, Ploeger D, Helmerhorst TJ, Ramaekers FC, Arends JW, Hopman AH (2009) Distribution pattern and marker profile show two subpopulations of reserve cells in the endocervical canal. Int J Gynecol Pathol 28(4):381–388. doi:10.1097/PGP.0b013e31819932f8

    Article  PubMed  Google Scholar 

  • Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB (2000) Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol 151(12):1158–1171

    Article  CAS  PubMed  Google Scholar 

  • Okino K, Nagai H, Hatta M, Nagahata T, Yoneyama K, Ohta Y, Jin E, Kawanami O, Araki T, Emi M (2003) Up-regulation and overproduction of DVL-1, the human counterpart of the Drosophila dishevelled gene, in cervical squamous cell carcinoma. Oncol Rep 10(5):1219–1223

    CAS  PubMed  Google Scholar 

  • Padilla LA, Leung BS, Carson LF (2002) Evidence of an association between human papillomavirus and impaired chemotherapy-induced apoptosis in cervical cancer cells. Gynecol Oncol 85(1):59–66. doi:10.1006/gyno.2002.6604

    Article  CAS  PubMed  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902. doi:10.1038/nrc1232

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65(14):6207–6219, doi:65/14/6207 [pii] 10.1158/0008-5472.CAN-05-0592

    Article  CAS  PubMed  Google Scholar 

  • Peiretti M, Zapardiel I, Zanagnolo V, Landoni F, Morrow CP, Maggioni A (2012) Management of recurrent cervical cancer: a review of the literature. Surg Oncol 21(2):e59–e66. doi:10.1016/j.suronc.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  • Perez CA, Grigsby PW, Camel HM, Galakatos AE, Mutch D, Lockett MA (1995) Irradiation alone or combined with surgery in stage IB, IIA, and IIB carcinoma of uterine cervix: update of a nonrandomized comparison. Int J Radiat Oncol Biol Phys 31(4):703–716

    Article  CAS  PubMed  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511

    Article  CAS  PubMed  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978, doi:0610117104 [pii]10.1073/pnas.0610117104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi W, Zhao C, Zhao L, Liu N, Li X, Yu W, Wei L (2014) Sorting and identification of side population cells in the human cervical cancer cell line HeLa. Cancer Cell Int 14(1):3. doi:10.1186/1475-2867-14-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Rampias T, Boutati E, Pectasides E, Sasaki C, Kountourakis P, Weinberger P, Psyrri A (2010) Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer Res 8(3):433–443. doi:10.1158/1541-7786.MCR-09-0345

    Article  CAS  PubMed  Google Scholar 

  • Raz R, Lee CK, Cannizzaro LA, D’Eustachio P, Levy DE (1999) Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 96(6):2846–2851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren C, Cheng X, Lu B, Yang G (2013) Activation of interleukin-6/signal transducer and activator of transcription 3 by human papillomavirus early proteins 6 induces fibroblast senescence to promote cervical tumourigenesis through autocrine and paracrine pathways in tumour microenvironment. Eur J Cancer 49(18):3889–3899, doi:10.1016/j.ejca.2013.07.140S0959-8049(13)00716-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    Article  CAS  PubMed  Google Scholar 

  • Samarzija I, Beard P (2012) Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration. Biochem Biophys Res Commun 425(1):64–69. doi:10.1016/j.bbrc.2012.07.051

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan R, Bhatla N, Gravitt PE, Basu P, Esmy PO, Ashrafunnessa KS, Ariyaratne Y, Shah A, Nene BM (2008) Human papillomavirus infection and cervical cancer prevention in India, Bangladesh, Sri Lanka and Nepal. Vaccine 26(Suppl 12):M43–M52, doi:10.1016/j.vaccine.2008.05.005S0264-410X(08)00577-X [pii]

    Article  PubMed  Google Scholar 

  • Saxena A, Yashar C, Taylor DD, Gercel-Taylor C (2005) Cellular response to chemotherapy and radiation in cervical cancer. Am J Obstet Gynecol 192(5):1399–1403, doi:S0002937805000190 [pii]10.1016/j.ajog.2004.12.045

    Article  CAS  PubMed  Google Scholar 

  • Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EY (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68(9):3243–3250. doi:10.1158/0008-5472.CAN-07-5480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara A, Yokoyama Y, Wan X, Takahashi Y, Mori Y, Takami T, Shimokawa K, Tamaya T (2001) Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix. Gynecol Oncol 82(3):450–455. doi:10.1006/gyno.2001.6298

    Article  CAS  PubMed  Google Scholar 

  • Shishido Y, Ueno S, Yamazaki R, Nagaoka M, Matsuzaki T (2013) ABCG2 inhibitor YHO-13351 sensitizes cancer stem/initiating-like side population cells to irinotecan. Anticancer Res 33(4):1379–1386, doi:33/4/1379 [pii]

    CAS  PubMed  Google Scholar 

  • Shukla S, Shishodia G, Mahata S, Hedau S, Pandey A, Bhambhani S, Batra S, Basir SF, Das BC, Bharti AC (2010) Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Mol Cancer 9:282. doi:10.1186/1476-4598-9-282

    Article  PubMed Central  PubMed  Google Scholar 

  • Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A, Vishnoi K, Basir SF, Das BC, Bharti AC (2013) Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One 8(7):e67849, doi:10.1371/journal.pone.0067849 PONE-D-13-02326 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  • Soto U, Das BC, Lengert M, Finzer P, zur Hausen H, Rosl F (1999) Conversion of HPV 18 positive non-tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-alpha mediated repression of viral transcription and modification of the AP-1 transcription complex. Oncogene 18(21):3187–3198. doi:10.1038/sj.onc.1202765

    Article  CAS  PubMed  Google Scholar 

  • Stehman FB, Bundy BN, DiSaia PJ, Keys HM, Larson JE, Fowler WC (1991) Carcinoma of the cervix treated with radiation therapy. I. A multi-variate analysis of prognostic variables in the Gynecologic Oncology Group. Cancer 67(11):2776–2785

    Article  CAS  PubMed  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106. doi:10.1038/nrclinonc.2010.196

    Article  CAS  PubMed  Google Scholar 

  • Tam W-L, Lim B (2008) Genome-wide transcription factor localization and function in stem cell vol The Stem Cell Research Community, StemBook. Stembook. doi:10.3824/stembook.1.19.1

  • Villanueva-Toledo J, Ponciano-Gomez A, Ortiz-Sanchez E, Garrido E (2014) Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol Biol Rep. doi:10.1007/s11033-014-3047-3

    PubMed  Google Scholar 

  • von Knebel Doeberitz M, Rittmuller C, zur Hausen H, Durst M (1992) Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. Int J Cancer 51(5):831–834

    Article  Google Scholar 

  • Wang K, Zeng J, Luo L, Yang J, Chen J, Li B, Shen K (2013a) Identification of a cancer stem cell-like side population in the HeLa human cervical carcinoma cell line. Oncol Lett 6(6):1673–1680, doi:10.3892/ol.2013.1607ol-06-06-1673 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS (2013b) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis 4:e760. doi:10.1038/cddis.2013.272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Huang S, Zhao X, Zhang Q, Wu M, Sun F, Han G, Wu D (2014) Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples. Int J Clin Exp Pathol 7(1):184–193

    PubMed Central  PubMed  Google Scholar 

  • Wanichwatanadecha P, Sirisrimangkorn S, Kaewprag J, Ponglikitmongkol M (2012) Transactivation activity of human papillomavirus type 16 E6*I on aldo-keto reductase genes enhances chemoresistance in cervical cancer cells. J Gen Virol 93(Pt 5):1081–1092, doi:vir.0.038265-0 [pii]10.1099/vir.0.038265-0

    Article  CAS  PubMed  Google Scholar 

  • Weijzen S, Zlobin A, Braid M, Miele L, Kast WM (2003) HPV16 E6 and E7 oncoproteins regulate Notch-1 expression and cooperate to induce transformation. J Cell Physiol 194(3):356–362. doi:10.1002/jcp.10217

    Article  CAS  PubMed  Google Scholar 

  • Xuan YH, Jung HS, Choi YL, Shin YK, Kim HJ, Kim KH, Kim WJ, Lee YJ, Kim SH (2006) Enhanced expression of hedgehog signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions. Mod Pathol 19(8):1139–1147. doi:10.1038/modpathol.3800600

    CAS  PubMed  Google Scholar 

  • Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153–166, doi:S1535-6108(08)00009-3 [pii]10.1016/j.ccr.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang Y, Yin C, Li X (2014) Clinical significance of the stem cell gene Oct-4 in cervical cancer. Tumour Biol. doi:10.1007/s13277-014-1696-4

    Google Scholar 

  • Yao T, Chen Q, Zhang B, Zhou H, Lin Z (2011) The expression of ALDH1 in cervical carcinoma. Med Sci Monit 17(8):HY21–HY26, doi:881886 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye F, Zhou C, Cheng Q, Shen J, Chen H (2008) Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer 8:108, doi:1471-2407-8-108 [pii]10.1186/1471-2407-8-108

    Article  PubMed Central  PubMed  Google Scholar 

  • Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S (1995) Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci U S A 92(14):6414–6418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaino RJ, Ward S, Delgado G, Bundy B, Gore H, Fetter G, Ganjei P, Frauenhoffer E (1992) Histopathologic predictors of the behavior of surgically treated stage IB squamous cell carcinoma of the cervix. A Gynecologic Oncology Group study. Cancer 69(7):1750–1758

    Article  CAS  PubMed  Google Scholar 

  • Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267. doi:10.1038/nrc3023

    Article  PubMed  Google Scholar 

  • zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350. doi:10.1038/nrc798

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok C. Bharti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vishnoi, K., Tyagi, A., Singh, S.M., Das, B.C., Bharti, A.C. (2015). Cervical Cancer Stem Cells and Their Association with Human Papillomavirus: Are They Ready as Anticancer Targets?. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_24

Download citation

Publish with us

Policies and ethics