Skip to main content

Targeting Mitochondria: A Powerhouse Approach to Cancer Treatment

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

The central role that mitochondria play in cancer progression was highlighted by Otto Warburg in 1920s. He inferred that malignant cells synthesise ATP by metabolising glucose predominantly through glycolytic pathway rather than more efficient process of oxidative phosphorylation He proposed that such glycolytic ATP production is a universal property of malignant cells and that an impaired mitochondrial metabolism is a key event in development of carcinogenesis. More recent studies have revealed that in addition to their role in energy metabolism, mitochondria are also crucial regulator of apoptosis, a fundamental cellular function by which cells die in a well-controlled or programmed manner. Evasion of apoptosis is an important hallmark of cancer cell and a major cause of treatment failure. Therefore, targeting mitochondria is considered a promising strategy as it not only would affect the energy-dependent cell survival but also initiates the apoptotic pathway. This chapter would focus on the altered mitochondrial bioenergetics in tumour cells and their therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballot C, Kluza J, Lancel S, Martoriati A, Hassoun SM, Mortier L et al (2010) Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis 15:769–781

    Article  CAS  PubMed  Google Scholar 

  • Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012:1–21

    Article  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  • Buchwald P, Krummeck G, Rödel G (1991) Immunological identification of yeast SCO1 protein as a component of the inner mitochondrial membrane. Mol Gen Genet 229:413–420

    Article  CAS  PubMed  Google Scholar 

  • Cairns CB, Walther J, Harken AH, Banerjee A (1998) Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles. Am J Physiol 274:R1376–R1383

    CAS  PubMed  Google Scholar 

  • Chen Z, Zhang H, Lu W, Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta 1787:553–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen S, Flescher E (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug. Phytochemistry 70:1600–1609

    Article  CAS  PubMed  Google Scholar 

  • Cuperus R, Leen R, Tytgat GA, Caron HN, Van Kuilenburg AB (2010) Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci 67:807–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L et al (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–228

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Kawano Y, Yuki H, Okuno Y, Nosaka K, Mitsuya H et al (2013) PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br J Cancer 108:170–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geschwind JFH, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913

    CAS  PubMed  Google Scholar 

  • Green A, Philip B (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370

    Article  CAS  PubMed  Google Scholar 

  • Guccini I, Serio D, Condò I, Rufini A, Tomassini B, Mangiola A et al (2011) Frataxin participates to the hypoxia-induced response in tumors. Cell Death Dis 2:e123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ et al (2011) 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–142

    Article  CAS  PubMed  Google Scholar 

  • Jeong NY, Yoo YH (2012) Cerulenin-induced apoptosis is mediated by disrupting the interaction between AIF and hexokinase II. Int J Oncol 40:1949–1956

    CAS  PubMed  Google Scholar 

  • Jezek P, Plecita-Hlavata L, Smolkova K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jourdain A, Martinou JC (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41:1884–1889

    Article  CAS  PubMed  Google Scholar 

  • Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153

    PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    Article  CAS  PubMed  Google Scholar 

  • Kueck A, Opipari AW, Griffith KA, Tan L, Choi M, Huang J et al (2007) Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol Oncol 107:450–457

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Donti TR, Agnihotri N, Mehta K (2014) Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways. Int J Cancer 134(12):2798–2807

    Article  CAS  PubMed  Google Scholar 

  • Kurelac I, Romeo G, Gasparre G (2011) Mitochondrial metabolism and cancer. Mitochondrion 11:635–637

    Article  PubMed  Google Scholar 

  • Kwong JQ, Henning MS, Starkov AA, Manfredi G (2007) The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179:1163–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marin-Hernandez A, Gallardo-Perez JC, Rodriguez-Enriquez S, Encalada R, Moreno-Sanchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 2011:755–767

    Article  Google Scholar 

  • Martinez-Mir A, Glaser B, Chuang GS, Horev L, Waldman A, Engler DE et al (2003) Germline fumarate hydratase mutations in families with multiple cutaneous and uterine leiomyomata. J Invest Dermatol 121:741–744

    Article  CAS  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merchan JR, Kovacs K, Railsback JW, Kurtoglu M, Jing Y, Pina Y et al (2010) Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One 5:e13699

    Article  PubMed Central  PubMed  Google Scholar 

  • Merendino N, Costantini L, Manzi L, Molinari R, D’Eliseo D, Velotti F (2013) Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. Biomed Res Int 2013:1–11

    Article  Google Scholar 

  • Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34

    CAS  PubMed  Google Scholar 

  • Muñoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodóvar C, Palacios C, López-Rivas A (2003) Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 278:12759–12768

    Article  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  CAS  PubMed  Google Scholar 

  • Park JB (1999) Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochem Biophys Res Commun 260:568–574

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Kim EJ, Shin HK, Kwon DY, Kim MS, Surh YJ et al (2007) Induction of apoptosis in HT-29 colon cancer cells by phloretin. J Med Food 10:581–586

    Article  CAS  PubMed  Google Scholar 

  • Pathak RK, Marrache S, Harn DA, Dhar S (2014) Mito-DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. ACS Chem Biol 9:1178–1187

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Branco AF, Matos AC, Pereira SL, Parke D, Perkins EL et al (2007) Mitochondrially targeted effects of berberine [Natural Yellow quinolizinium] on K1735–M2 mouse melanoma cells: comparison with direct effects on isolated mitochondrial fractions. J Pharmacol Exp Ther 323:636–649

    Article  CAS  PubMed  Google Scholar 

  • Perez A, Ojeda P, Ojeda L, Salas M, Rivas CI, Vera JC et al (2011) Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins. Biochemistry 50:8834–8845

    Article  CAS  PubMed  Google Scholar 

  • Pramanik KC, Boreddy SR, Srivastava SK (2011) Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6:e20151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raimondi C, Falasca M (2011) Targeting PDK1 in cancer. Curr Med Chem 18:2763–2769

    Article  CAS  PubMed  Google Scholar 

  • Reddy CA, Somepalli V, Golakoti T, Kanugula AK, Karnewar S, Rajendiran K et al (2014) Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS One 9:e89351

    Article  PubMed Central  PubMed  Google Scholar 

  • Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz TJ, Thierbach R, Voigt A, Drewes G, Mietzner B, Steinberg P et al (2006) Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem 281:977–981

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Rani I, Kansal S, Bhatnagar A, Agnihotri N (2013) Alterations in mitochondrial membrane in chemopreventive action of fish oil. Cancer Invest 3:231–240

    Article  Google Scholar 

  • Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J et al (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768

    Article  CAS  PubMed  Google Scholar 

  • Simons AL, Mattson DM, Dornfeld K, Spitz DR (2009) Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther 5:1–7

    Google Scholar 

  • Smolkova K, Bellance N, Scandurra F, Genot E, Gnaiger E, Plecita-Hlavata L et al (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55–67

    Article  CAS  PubMed  Google Scholar 

  • Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362

    Article  CAS  PubMed  Google Scholar 

  • Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26:299–310

    Article  CAS  PubMed  Google Scholar 

  • Teiten MH, Eifes S, Dicato M, Diederich M (2010) Curcumin―the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2:128–162

    Article  CAS  Google Scholar 

  • Torres MP, Rachagani S, Purohit V, Pandey P, Joshi S, Moore ED et al (2012) Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 323:29–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Loo TY, Shen JG, Wang N, Wang DM, Yang DP et al (2012) LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res Treat 131:791–800

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Zhou Y, Dai Q, Qiao C, Zhao L, Hui H et al (2013) Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis 4:e601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg F, Chandel NS (2009) Mitochondrial metabolism and cancer. Ann N Y Acad Sci 1177:66–73

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Ho YS, Tsai CY, Wang YJ, Tseng H, Wei PL et al (2009) In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer 124:2210–2219

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Williams Parsons D, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhai X, Yang Y, Wan J, Zhu R, Wu Y (2013) Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol Rep 30:2983–2991

    CAS  PubMed  Google Scholar 

  • Zhong D, Xiong L, Liu T, Liu X, Liu X, Chen J et al (2009) The glycolytic inhibitor 2-deoxyglucose activates multiple prosurvival pathways through IGF1R. J Biol Chem 284:23225–23233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Agnihotri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Agnihotri, N., Rani, I., Kumar, S. (2015). Targeting Mitochondria: A Powerhouse Approach to Cancer Treatment. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_16

Download citation

Publish with us

Policies and ethics