Skip to main content

Introduction

  • Chapter
  • First Online:
Homomorphic Encryption and Applications

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Encryption is the process of converting messages, information, or data into a form unreadable by anyone except the intended recipient. Encrypted data must be decrypted, before it can be read by the recipient. In its earliest form, people have been attempting to conceal certain information that they wanted to keep to their own possession by substituting parts of the information with symbols, numbers, and pictures. Today’s encryption algorithms are divided into two categories: secret key and public key. Secret key encryption schemes use the same key (the secret key) to encrypt and decrypt a message, and public-key encryption schemes use one key (the public key) to encrypt a message and a different key (the private key) to decrypt it, and all of today’s encryption algorithms fit within those two categories. This chapter introduces the history of encryption techniques from classical ciphers to secret key encryption and public-key encryption, including secret key and public-key encryption models. It provides some background for homomorphic encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bellare, P. Rogaway, Optimal asymmetric encryption—how to encrypt with RSA, in Proceedings of Eurocrypt’94, 1994

    Google Scholar 

  2. E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1, in Proceedings of the CRYPTO’98, 1998, pp. 1–12

    Google Scholar 

  4. D. Boneh, Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc. 46(2), 203–213 (1999)

    MATH  MathSciNet  Google Scholar 

  5. A. Bruen, M. Forcinito, Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century (Wiley, Newyork, 2011), p. 21

    Google Scholar 

  6. D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Coron, D. Naccache, Security analysis of the Gennaro-Halevi-Rabin signature scheme, in Proceedings of EUROCRYPT’00, 2000, pp. 91–101

    Google Scholar 

  8. J. Daemen, V. Rijmen, AES Proposal: Rijndael (National Institute of Standards and Technology, 2013), p.1,

    Google Scholar 

  9. D. Davies, S. Murphy, Pairs and triplets of DES S-boxes. J. Cryptol. 8(1), 1–25 (2007)

    Google Scholar 

  10. W. Diffie, M. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Hastad, On using RSA with low exponent in a public key network, in Proceedings of CRYPTO’85, 1986, pp. 403–408

    Google Scholar 

  12. D. Kahn, The Codebreakers: The Story of Secret Writing (Rev Sub. Scribner, NewYork, 1996)

    Google Scholar 

  13. T. Kelly. The myth of the skytale. Cryptologia 22(3), 244–260 (1998)

    Article  Google Scholar 

  14. D. Luciano, G. Prichett, Cryptology: from Caesar ciphers to public-key cryptosystems. Coll. Math. J. 18(1), 2–17 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Matsui, Linear cryptanalysis method for DES cipher, in Proceedings of EUROCRYPT’93, 1994, pp. 386–397

    Google Scholar 

  16. D. Newton, Encyclopedia of Cryptography. Instructional Horizons, Inc (Santa Barbara, California, 1997), p. 6

    Google Scholar 

  17. M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization (MIT Laboratory for Computer Science, Cambridge, 1979)

    Google Scholar 

  18. R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C, 2nd edn. (Wiley, New York, 1996), p. 267

    MATH  Google Scholar 

  20. C. Shannon, Communication theory of secrecy systems. Bell Syst. Techn. J. 28(4), 656–715 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Urban, The lockade of Ciudad Rodrigo, June to November 1811—The great cipher. In The Man Who Broke Napoleon’s Codes (Harper Perennial, New York, 2003)

    Google Scholar 

  22. H. Williams, A modification of the RSA public-key encryption procedure. IEEE Trans. Inform. Theor. 26(6), 726–729 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Xun Yi, Russell Paulet, Elisa Bertino

About this chapter

Cite this chapter

Yi, X., Paulet, R., Bertino, E. (2014). Introduction. In: Homomorphic Encryption and Applications. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-12229-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12229-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12228-1

  • Online ISBN: 978-3-319-12229-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics