Skip to main content

A General Phase Transfer Approach for Metal Ions and Nanoparticles

  • Chapter
  • First Online:
Metal-Based Composite Nanomaterials

Abstract

This chapter introduces a general protocol to transfer metal ions from aqueous solution to an organic medium, which involves mixing the aqueous solution of metal ions with an ethanolic solution of dodecylamine (DDA), and extracting the coordinating compounds formed between metal ions and DDA into toluene. This protocol could be applied toward transferring a wide variety of transition metal ions with efficiency higher than 95 % and allows the synthesis of a variety of metallic and semiconductor nanocrystals to be performed in organic medium using relatively inexpensive water-soluble metal salts as starting materials. This protocol could also be extended to transfer a variety of noble metal nanoparticles from aqueous phase to nonpolar organic media. As shown in latter sections, the phase transfer of metal ions and nanoparticles offers necessary solvent surroundings for the wet chemistry-based synthesis of nanomaterials and is an important step preceding the fabrication of noble metal-based nanocomposites with multiple functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7(4):333–338

    Article  Google Scholar 

  • Bao Y, Calderon H, Krishnan KM (2007) Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J Phys Chem C 111(5):1941–1944

    Article  Google Scholar 

  • Brown LO, Hutchison JE (1997) Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119(50):12384–12385

    Article  Google Scholar 

  • Brown LO, Hutchison JE (1999) Controlled growth of gold nanoparticles during ligand exchange. J Am Chem Soc 21(4):882–883

    Article  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun (7):801–802

    Google Scholar 

  • Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Commun 16:1655–1656

    Article  Google Scholar 

  • Carotenuto G, Nicolais L (2003) Size-controlled synthesis of thiol-derivatized gold clusters. J Mater Chem 13(5):1038–1041

    Article  Google Scholar 

  • Chen Y, Wang X (2008) Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature. Mater Lett 62(15):2215–2218

    Article  Google Scholar 

  • Chen S, Templeton AC, Murray RW (2000) Monlayer-protected cluster growth dynamics. Langmuir 16(7):3543–3548

    Article  Google Scholar 

  • Cushing B, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104(9):3893–3946

    Article  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228–2269

    Article  Google Scholar 

  • Demortiere A, Petit C (2007) First synthesis by liquid–liquid phase transfer of magnetic CoxPt100–x nanoalloys. Langmuir 23(16):8575–8584

    Article  Google Scholar 

  • Donkers RL, Song Y, Murray RW (2004) Substituent effects on the exchange dynamics of ligands on 1.6 nm diameter gold nanoparticles. Langmuir 20(11):4703–4707

    Article  Google Scholar 

  • Gao J, Liang G, Cheung JS, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu EX, Xu B (2008) Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. J Am Chem Soc 130(35):11828–11833

    Article  Google Scholar 

  • Gaponik N, Talapin DV, Rogach AL, Eychmuller A, Weller H (2002) Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents. Nano Lett 2(8):803–806

    Article  Google Scholar 

  • Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934

    Article  Google Scholar 

  • Grace AN, Pandian K (2007) Synthesis of gold and platinum nanoparticles using tetraaniline as reducing and phase transfer agent—a brief study and their role in the electrocatalytic oxidation of glucose. J Phys Chem Solids 68(12):2278–2285

    Article  Google Scholar 

  • He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122(38):9071–9077

    Article  Google Scholar 

  • Horswell SL, Kiely CJ, O’Neil IA, Schiffrin DJ (1999) Alkyl isocyanide-derivatized platinum nanoparticles. J Am Chem Soc 121(23):5573–5574

    Article  Google Scholar 

  • Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30

    Article  Google Scholar 

  • Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15(11):3782–3789

    Article  Google Scholar 

  • Jimenez VL, Georganopoulou DG, White RJ, Harper AS, Mills AJ, Lee D, Murray RW (2004) Hexanethiolate monolayer protected 38 gold atom cluster. Langmuir 20(16):6864–6870

    Article  Google Scholar 

  • Johnson SR, Evans SD, Brydson R (1998) Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles. Langmuir 14(23):6639–6647

    Article  Google Scholar 

  • Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalysts for Suzuki coupling reactions. J Am Chem Soc 124(26):7642–7643

    Article  Google Scholar 

  • Krasteva N, Besnard I, Guse B, Bauer RE, Mullen K, Yasuda A, Vossmeyer T (2002) Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett 2(5):551–555

    Article  Google Scholar 

  • Lala N, Lalbegi SP, Adyanthaya SD, Sastry M (2001) Phase transfer of aqueous gold colloidal particles capped with inclusion complexes of cyclodextrin and alkanethiol molecules into chloroform. Langmuir 17(12):3766–3768

    Article  Google Scholar 

  • Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12(20):4723–4730

    Article  Google Scholar 

  • Lei Y, Chim WK (2005) Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence. J Am Chem Soc 127(5):1487–1492

    Article  Google Scholar 

  • Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9(8):3066–3071

    Article  Google Scholar 

  • Liang CH, Wang CC, Lin YC, Chen CH, Wong CH, Wu CY (2009) Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. Anal Chem 81(18):7750–7756

    Article  Google Scholar 

  • Liu Z, Hu JE, Wang Q, Gaskell K, Frenkel AI, Jackson GS, Eichhorn B (2009) PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts. J Am Chem Soc 131(20):6924–6925

    Article  Google Scholar 

  • Liu H, Qu J, Chen Y, Li J, Ye F, Lee JY, Yang J (2012) Hollow and cage-bell structured nanomaterials of noble metals. J Am Chem Soc 134(28):11602–11610

    Article  Google Scholar 

  • Liu H, Ye F, Yang J (2014) A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind Eng Chem Res 53(14):5925–5931

    Article  Google Scholar 

  • Luo J, Wang L, Mott D, Njoki PN, Lin Y, He T, Xu Z, Wanjana BN, Lim IIS, Zhong CJ (2008) Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv Mater 20(22):4342–4347

    Article  Google Scholar 

  • Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt–Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112(7):2770–2778

    Article  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4(6):435–446

    Article  Google Scholar 

  • Meguro K, Tano T, Torigoe K, Nakamura H, Esumi K (1988/1989) Preparation of organo gold particles by reduction of etractedchlorauric acid with some reductants. Colloids Surf 34(4):381–388

    Google Scholar 

  • Meguro K, Torizuka M, Esumi K (1988) The preparation of organo colloidal precious metal particles. Bull Chem Soc Jpn 61:341–345

    Article  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  Google Scholar 

  • Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678):1787–1790

    Article  Google Scholar 

  • Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120(48):12674–12675

    Article  Google Scholar 

  • Porter LA, Ji D, Westcott SL, Graupe M, Czernuszewicz RS, Halas NJ, Lee TR (1998) Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir 14(26):7378–7386

    Article  Google Scholar 

  • Roundhill DM (2001) Extraction of metals from soils and waters. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Sarathy KV, Kulkarni GU, Rao CNR (1997a) A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chem Commum (6):537–538

    Google Scholar 

  • Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997b) Thiol-derivatizednanocrystalline arrays of gold, silver, and platinum. J Phys Chem B 101(48):9876–9880

    Article  Google Scholar 

  • Sastry M (2003) Phase transfer protocols in nanoparticle synthesis. Curr Sci 85(12):1735–1745

    Google Scholar 

  • Schaaff TG, Rodinone AJ (2003) Preparation and characterization of silver sulfide nanocrystals generated from silver(I)-thiolate polymers. J Phys Chem B 107(38):10416–10422

    Article  Google Scholar 

  • Schaaff TG, Whetten RL (1999) Controlled etching of Au: SR cluster compounds. J Phys Chem B 103(44):9394–9396

    Article  Google Scholar 

  • Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Gutierrez-Wing C, Ascensio J, Jose-Yacaman MJ (1997) Isolation of smaller nanocrystal Au molecules: robust quantum effects in optical spectra. J Phys Chem B 101(40):7885–7891

    Article  Google Scholar 

  • Selvakannan PR, Mandal S, Pasricha R, Sastry M (2004) Hydrophobic, organically dispersible gold nanoparticles of variable shape produced by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules. J Colloid Interface Sci 279(1):124–131

    Article  Google Scholar 

  • Shi H, Fu X, Zhou X, Hu Z (2006a) Preparation of organic fluids with high loading concentration of Ag2S nanoparticles using the extractant Cyanex301. J Mater Chem 16(21):2097–2101

    Article  Google Scholar 

  • Shi W, Zeng H, Sahoo Y, Ohulchanskyy TY, Ding Y, Wang ZL, Swihart M, Prasad PN (2006b) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6(4):875–881

    Article  Google Scholar 

  • Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324

    Article  Google Scholar 

  • Song X, Sun S, Zhang W, Yin Z (2004) A method for the synthesis of spherical copper nanoparticles in the organic phase. J Colloid Interface Sci 273(2):463–469

    Article  Google Scholar 

  • Song W, Wu C, Yin H, Liu X, Sa P, Hu J (2008) Preparation of PbS nanoparticles by phase-transfer method and application to Pb2+-selective electrode based on PVC membrane. Anal Lett 41(15):2844–2859

    Article  Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760

    Article  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36

    Article  Google Scholar 

  • Terrill RH, Postlethwaite TA, Chen CH, Poon CD, Terzis A, Chen A, Hutchison JE, Clark MR, Wignall G, Londono JD, Superfine R, Falvo M, Johnson JCS, Samulski ET, Murray RW (1995) Monolayers in three dimensions: NMR, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117(50):12537–12548

    Article  Google Scholar 

  • Wang W, Efrima S, Regev O (1998) Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 14(3):602–610

    Article  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121–124

    Article  Google Scholar 

  • Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8(5):428–433

    Article  Google Scholar 

  • Wikander K, Petit C, Holmberg K, Pileni MP (2006) Size control and growth process of alkylamine-stabilized platinum nanocrystals: a comparison between the phase transfer and reverse micelles methods. Langmuir 22(10):4863–4868

    Article  Google Scholar 

  • Yang J, Ying JY (2009) Room-temperature synthesis of nanocrystalline Ag2S and its nanocomposites with gold. Chem Commun (22):3187–3189

    Google Scholar 

  • Yang J, Ying JY (2011) Nanocomposites of Ag2S and noble metals. Angew Chem Int Ed 50(20):4637–4643

    Article  Google Scholar 

  • Yang J, Lee JY, Deivaraj TC, Too HP (2004) A highly efficient phase transfer method for preparing alkylamine-stabilized Ru, Pt, and Au nanoparticles. J Colloid Interface Sci 277(1):95–99

    Article  Google Scholar 

  • Yang J, Lee JY, Too HP, Chow GM, Gan LM (2005) Triton X-100-assisted assembly of 5-nm Au nanoparticles by DNA hybridization. Chem Lett 34(3):354–355

    Article  Google Scholar 

  • Yang J, Lee JY, Too HP, Valiyaveettil S (2006) A Bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. J Phys Chem B 110(1):125–129

    Article  Google Scholar 

  • Yang J, Lee JY, Too HP (2007) A general phase transfer protocol for synthesizing alkylamine-stabilized nanoparticles of noble metals. Anal Chim Acta 588(1):34–41

    Article  Google Scholar 

  • Yang J, Sargent EH, Kelley SO, Ying JY (2009) A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat Mater 8(8):683–689

    Article  Google Scholar 

  • Yang J, Lee JY, Ying JY (2011) Phase transfer and its applications in nanotechnology. Chem Soc Rev 40(3):1672–1696

    Article  Google Scholar 

  • Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704

    Article  Google Scholar 

  • Zhang XB, Yan JM, Han S, Shioyama H, Xu Q (2009) Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. J Am Chem Soc 131(8):2778–2779

    Article  Google Scholar 

  • Zhou QF, Bao JC, Xu Z (2002) Shape-controlled synthesis of nanostructured gold by a protection-reduction technique. J Mater Chem 12(2):384–387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, J., Liu, H. (2015). A General Phase Transfer Approach for Metal Ions and Nanoparticles. In: Metal-Based Composite Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-12220-5_2

Download citation

Publish with us

Policies and ethics