Skip to main content

Interplay Between Strong Coupling and Radiative Damping in Hybrid Excitonic-Plasmonic Nanostructures

  • Chapter
  • First Online:
Progress in Nonlinear Nano-Optics

Abstract

Surface plasmon polaritons (SPPs), optical excitations at the interface between a metal and a dielectric, carry significant potential for guiding and manipulating light on the nanoscale (Bozhevolnyi et al. Nature 440(7083):508–511, 2006; Lal et al. Nat Photonics 1(11):641–648, 2007; Maier et al. Nat Mater 2(4):229–232, 2003). Their weak optical nonlinearities, however, hinder active device fabrication, e.g., for all-optical switching (Chang et al. Nat Phys 3(11):807–812, 2007; Dintinger et al. Adv Mater 18(13):1645, 2006; MacDonald et al. Nat Photonics 3(1):55–58, 2009; Vasa et al. ACS Nano 4:7559–7565, 2010) or information processing (Engheta Science 317(5845):1698–1702, 2007; Gonzalez-Tudela et al. Phys Rev Lett 106:020501, 2011). Recently, strong optical dipole coupling between SPPs and nonlinear quantum emitters with normal mode splittings of up to 700 meV has been demonstrated (Aberra Guebrou et al. Phys Rev Lett 108:066401(5p), 2012; Bellessa et al. Phys Rev Lett 93:036404, 2004; Dintinger et al. Phys Rev B 71:035424, 2005; Fofang et al. Nano Lett 8:3481–3487, 2008; Hakala et al. Phys Rev Lett 103(5):053602, 2009; Sonnefraud et al. ACS Nano 4(3):1664–1670, 2010). The predicted ultrafast energy transfer between quantum emitters and SPP fields could be a crucial microscopic mechanism for switching light by light on the nanoscale. Here, we present the first real-time observation of ultrafast Rabi oscillations in a J-aggregate/metal nanostructure, evidencing coherent energy transfer between excitonic quantum emitters and SPP fields. We demonstrate coherent manipulation of the coupling energy by controlling the exciton density on a 10-fs timescale, a step forward towards coherent, all-optical ultrafast plasmonic circuits and devices. We report on the interplay between strong coupling and radiative damping of strongly coupled excitons (Xs) and surface plasmon polaritons (SPPs) in a hybrid system made of J-aggregate and metal nanostructures. The optical response of the system is probed at the field level by angle-resolved spectral interferometry. We show that two different energy transfer channels coexist: coherent resonant dipole-dipole interaction and an incoherent exchange due to the spontaneous emissions of a photon by one emitter and subsequent reabsorption by another. The interplay between both pathways results in a pronounced modification of the radiative damping due to formation of super- and sub-radiant polariton states. This is confirmed by probing the nonlinear response of the polariton system and explained within a coupled oscillator model. Such a strong modification of the radiative damping opens up new directions in coherent active plasmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abb, P. Albella, J. Aizpurua, O.L. Muskens, All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Letters 11(6), 2457–2463 (2011)

    Article  ADS  Google Scholar 

  2. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alu, Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 108(26), 263905 (2012)

    Google Scholar 

  3. U. Akram, Z. Ficek, S. Swain, Decoherence and coherent population transfer between two coupled systems. Phys. Rev. A 62, 013413 (2000)

    Google Scholar 

  4. S. Aberra Guebrou, C. Symonds, E. Homeyer, J.C. Plenet, Y.N. Gartstein, V.M. Agranovich, J. Bellessa, Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (5p) (2012)

    Google Scholar 

  5. J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier, Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004)

    Article  ADS  Google Scholar 

  6. A. Boca, R Miller, K.M. Birnbaum, A.D. Boozer, J. McKeever, H.J. Kimble, Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93(23), 233603 (2004)

    Google Scholar 

  7. D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90(2), 027402 (2003)

    Google Scholar 

  8. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083), 508–511 (2006)

    Google Scholar 

  9. Y.N. Chen, D.S. Chuu, T. Brandes, Current detection of superradiance and induced entanglement of double quantum dot excitons. Phys. Rev. Lett. 90, 166802 (2003)

    Article  ADS  Google Scholar 

  10. D.E. Chang, A.S. Sorensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3(11), 807–812 (2007)

    Article  Google Scholar 

  11. R.G. DeVoe, R.G. Brewer, Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049–2052 (1996)

    Article  ADS  Google Scholar 

  12. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  13. J. Dintinger, S. Klein, F. Bustos, W.L. Barnes, T.W. Ebbesen, Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005)

    Google Scholar 

  14. K. Ding, Z.C. Liu, L.J. Yin, M.T. Hill, M.J.H. Marell, P.J. van Veldhoven, R. Noetzel, C.Z. Ning, Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B 85(4), 041301 (2012)

    Google Scholar 

  15. J. Dintinger, I. Robel, P.V. Kamat, C. Genet, T.W. Ebbesen, Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18(13), 1645 (2006)

    Google Scholar 

  16. C. Dahmen, B. Schmidt, G. von Plessen, Radiation damping in metal nanoparticle pairs. Nano Lett. 7(2), 318–322 (2007)

    Article  ADS  Google Scholar 

  17. N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007)

    Google Scholar 

  18. H. Fidder, J. Knoester, D.A. Wiersma, Observation of the one-exciton to two-exciton transition in a J aggregate. J. Chem. Phys. 98(8), 6564–6566 (1993)

    Article  ADS  Google Scholar 

  19. N.T. Fofang, T.-H. Park, O. Neumann, N.A. Mirin, P. Nordlander, N.J. Halas, Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. Nano Letters 8, 3481–3487 (2008)

    Google Scholar 

  20. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, F.J. Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    Google Scholar 

  21. C. Genet, M.P van Exter, J.P Woerdman, Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003)

    Google Scholar 

  22. D.E. Gomez, K.C. Vernon, P. Mulvaney, T.J. Davis, Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. Nano Letters 10(1), 274–278 (2010)

    Article  ADS  Google Scholar 

  23. M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures. Phys. Rev. Lett. 76, 4199–4202 (1996)

    Google Scholar 

  24. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Goetzinger, V. Sandoghdar, A single-molecule optical transistor. Nature 460(7251), 76–80 (2009)

    Google Scholar 

  25. C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt, V. Sandoghdar, Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298(5592), 385–389 (2002)

    Google Scholar 

  26. T.K. Hakala, J.J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, P. Torma, Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett. 103(5), 053602 (2009)

    Google Scholar 

  27. A. Ishizaki, G.R. Fleming, Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130(23), 234111 (2009)

    Google Scholar 

  28. M. Jurna, E.T. Garbacik, J.P. Korterik, J.L. Herek, C. Otto, H.L. Offerhaus, Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-stokes Raman scattering. Anal. Chem. 82(18), 7656–7659 (2010)

    Google Scholar 

  29. D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Y.H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, C. Lienau, Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003)

    Google Scholar 

  30. M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482(7384), 204–207 (2012)

    Google Scholar 

  31. S.-H. Lim, T.G. Bjorklund, F.C. Spano, C.J. Bardeen, Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004)

    Article  ADS  Google Scholar 

  32. R.H. Lehmberg, Radiation from an n-atom system. I. general formalism. Phys. Rev. A 2, 883–888 (1970)

    Google Scholar 

  33. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, Plasmonic nanolaser using epitaxially grown silver film. Science 337(6093), 450–453 (2012)

    Google Scholar 

  34. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photonics 1(11), 641–648 (2007)

    Article  ADS  Google Scholar 

  35. H. Lu, X. Liu, L. Wang, Y. Gong, D. Mao, Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19(4), 2910–2915 (2011)

    Google Scholar 

  36. S. Liu, D. Schmitz, S.-S. Jester, N.J. Borys, S. Hoeger, J.M. Lupton, Coherent and incoherent interactions between cofacial H-conjugated oligomer dimers in macrocycle templates. J. Phys. Chem. B 117(16, SI), 4197–4203 (2013)

    Google Scholar 

  37. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Google Scholar 

  38. P.W. Milonni, P.L. Knight, Retarded interaction of two nonidentical atoms. Phys. Rev. A 11, 1090–1092 (1975)

    Google Scholar 

  39. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2(4), 229–232 (2003)

    Google Scholar 

  40. K.F. MacDonald, Z.L. Samson, M.I. Stockman, N.I. Zheludev, Ultrafast active plasmonics. Nat. Photonics 3(1), 55–58 (2009)

    Article  ADS  Google Scholar 

  41. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V. M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460(7259), 1110–U68 (2009)

    Google Scholar 

  42. M.A. Noginov, G. Zhu, M. Mayy, B.A. Ritzo, N. Noginova, V.A. Podolskiy, Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101(22), 226806 (2008)

    Google Scholar 

  43. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461(7264), 629–632 (2009)

    Google Scholar 

  44. D. Pacifici, H.J. Lezec, H.A. Atwater, All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 1(7), 402–406 (2007)

    Article  ADS  Google Scholar 

  45. R.A. Pala, K.T. Shimizu, N.A. Melosh, M.L. Brongersma, A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8(5), 1506–1510 (2008)

    Article  ADS  Google Scholar 

  46. C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D.S. Kim, C. Lienau, Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys. Rev. Lett. 94, 113901 (2005)

    Google Scholar 

  47. F. Reynaud, F. Salin, A. Barthelemy, Measurement of phase-shifts introduced by nonlinear optical phenomena on subpicosecond pulses. Opt. Lett. 14(5), 275–277 (1989)

    Article  ADS  Google Scholar 

  48. G.D. Scholes, Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003)

    Article  ADS  Google Scholar 

  49. S.I. Schmid, J. Evers, Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms. Phys. Rev. A 81, 063805 (2010)

    Google Scholar 

  50. T. Schwartz, J.A. Hutchison, C. Genet, T.W. Ebbesen, Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011)

    Google Scholar 

  51. A.K. Sarychev, G. Tartakovsky, Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser. Phys. Rev. B 75(8), 085436 (2007)

    Google Scholar 

  52. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19(22), 22029–22106 (2011)

    Google Scholar 

  53. Y. Sonnefraud, N. Verellen, H. Sobhani, G.A.E. Vandenbosch, V.V. Moshchalkov, P. Van Dorpe, P. Nordlander, S.A. Maier, Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4(3), 1664–1670 (2010)

    Google Scholar 

  54. T. Scholak, T. Wellens, A. Buchleitner, Optimal networks for excitonic energy transport. J. Phys. B-At. Mol. Opt. Phys. 44(18, SI), 184012 (2011)

    Google Scholar 

  55. V.K. Valev, J.J. Baumberg, C. Sibilia, T. Verbiest, Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25(18), 2517–2534 (2013)

    Google Scholar 

  56. P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, C. Lienau, Ultrafast manipulation of strong coupling in metalmolecular aggregate hybrid nanostructures. ACS Nano 4, 7559–7565 (2010)

    Google Scholar 

  57. P. Vasa, R. Pomraenke, S. Schwieger, Y.I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, C. Lienau, Coherent exciton/surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures. Phys. Rev. Lett. 101, 116801 (2008)

    Google Scholar 

  58. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, C. Lienau, Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in J-aggregate/metal hybrid nanostructures. Nat. Photonics 7, 128 (2013)

    Google Scholar 

  59. H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: a hybrid plasmonic nanostructure. Nano Letters 6(4), 827–832 (2006)

    Google Scholar 

  60. W. Wang, P. Vasa, R. Pomraenke, R. Vogelgesang, A. De Sio, E. Sommer, M. Maiuri, C. Manzoni, G. Cerullo, C. Lienau, Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures, ACS Nano. 8(1), 1056–1064 (2014)

    Google Scholar 

  61. K. Yu, A. Lakhani, M.C. Wu, Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18(9), 8790–8799 (2010)

    Google Scholar 

  62. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Vogelgesang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vogelgesang, R. et al. (2015). Interplay Between Strong Coupling and Radiative Damping in Hybrid Excitonic-Plasmonic Nanostructures. In: Sakabe, S., Lienau, C., Grunwald, R. (eds) Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-12217-5_7

Download citation

Publish with us

Policies and ethics