Skip to main content

Femtosecond-Laser Induced Nanostructures in TiO2

  • Chapter
  • First Online:
Progress in Nonlinear Nano-Optics

Abstract

TiO2 nanostructures are important functional materials with a growing number of applications in fields like medicine, photochemistry or photovoltaics. We demonstrate that highly reproducible nanostructures can be generated on the surface of bulk as well as thin film material by exploiting the phenomenon of laser-induced periodic surface structures (LIPSS). The influence of key parameters like pulse number, laser fluence, wavelength, and surface quality on the formation of such nanoripples is discussed. The time-integrated theory of Drude and Sipe is extended by the nonlinear excitation of transparent materials into a transient metal-like state enabling for the effective generation of surface plasmon polaritons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.Y. Gan, S.W. Lam, K. Chiang, R. Amal, H. Zhao, M.P. Brungs, Novel thin film with non-UV activated superwetting and antifogging behaviours. J. Mat. Chem. 17, 952–954 (2007)

    Article  Google Scholar 

  2. S. Song, L. Jing, S.H. Fu, Y. Luan, Superhydrophilic anatase TiO2 film with the micro- and nanometerscale hierarchical surface structure. Mat. Lett. 62, 3503–3505 (2008)

    Article  Google Scholar 

  3. S.W. Lam, W.Y. Gan, K. Chiang, R. Amal, TiO2 semiconductor—a smart self-cleaning material. J. Aust. Ceramic Soc. 44, 6–11 (2008)

    Google Scholar 

  4. S. Law, S.W. Lam, W.Y. Gan, J. Scott, R. Amal, Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films. Thin Solid Films 517, 5425–5430 (2009)

    Article  ADS  Google Scholar 

  5. T. Tölke, A. Kriltz, A. Rechtenbach, The influence of pressure on the structure and the self-cleaning properties of sputter deposited TiO2 layers. Thin Solid Films 518, 4242–4246 (2010)

    Article  ADS  Google Scholar 

  6. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991)

    Article  Google Scholar 

  7. H.F. Lu, F. Li, G. Liu, Z.G. Chen, D.W. Wang, H.T. Fang, G.Q. Lu, Z.H. Jiang, H.M. Cheng, Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19, 405504 (2008)

    Article  Google Scholar 

  8. R. Karpagavalli, A. Zhou, P. Chellamuthu, K. Nguyen, Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. J. Biomed. Mat. Res. 83A, 1087–1095 (2007)

    Article  Google Scholar 

  9. K. Ozasa, S. Nemoto, Y. Li, M. Hara, M. Maeda, K. Mochitate, Contact angle and biocompatibility of sol-gel prepared TiO2 thin films for their use as semiconductor-based cell-viability sensors. Surf. Interface Anal. 40, 579–583 (2008)

    Article  Google Scholar 

  10. B. Li, J. Zhao, K. Onda, K.D. Jordan, J. Yang, H. Petek, Ultrafast interfacial proton-coupled electron transfer. Science 311, 1436–1440 (2006)

    Article  ADS  Google Scholar 

  11. T.J. Whang, H.Y. Huang, M.T. Hsieh, J.J. Chen, Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue. Int. J. Mol. Sci. 10, 4707–4718 (2009)

    Article  Google Scholar 

  12. Z. Wang, J. Liu, Y. Dai, W. Dong, S. Zhang, J. Chen, Dimethyl sulfide photocatalytic degradation in a light-emitting-diode continuous reactor: kinetic and mechanistic study. Ind. Eng. Chem. Res. 50, 7977–7984 (2011)

    Article  Google Scholar 

  13. M. Shen, J.E. Carey, C.H. Crouch, M. Kandyla, H.A. Stone, E. Mazur, High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Letters 8, 2087–2091 (2008)

    Article  ADS  Google Scholar 

  14. A.Y. Vorobyev, C. Guo, Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals. Appl. Phys. A 86, 321–324 (2007)

    Article  ADS  Google Scholar 

  15. B. Kumar, R.K. Soni, Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses. J. Phys. D Appl. Phys. 41, 155303 (2008)

    Article  ADS  Google Scholar 

  16. R. Taylor, C. Hnatovsky, E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photon. Rev. 2, 26–46 (2008)

    Article  Google Scholar 

  17. Y. Shimotsuma, M. Sakakura, K. Miura, J.R. Qiu, P.G. Kazansky, K. Fujita, K. Hirao, Application of femtosecond-laser induced nanostructures in optical memory. J. Nanosci. Nanotech. 7, 94–104 (2007)

    Google Scholar 

  18. J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A 71, 657–667 (2000)

    Google Scholar 

  19. H. Hiraoka, W.Y.Y. Wong, T.M. Wong, C.T. Hung, W.C. Loh, F.M. Lee, Pulsed laser processing of polymer and ceramic surfaces. J. Photopolym. Sci. Technol. 10, 205–210 (1997)

    Article  Google Scholar 

  20. S. Baudach, J. Bonse, W. Kautek, Ablation experiments on polyimide with femtosecond laser pulses. Appl. Phys. A 69, S395 (1999)

    Article  ADS  Google Scholar 

  21. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, H. Zimmermann, Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl. Phys. Lett. 98, 211905 (2011)

    Article  ADS  Google Scholar 

  22. M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu, Femtosecond laser induced periodic surface structures on ZnO thin films. JLMN-J. Laser Micro/Nanoeng. 4, 7 (2009)

    Article  Google Scholar 

  23. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure, I. Theory Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  24. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang, H. Kuroda, Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  25. M.S. Trtica, B.M. Gakovic, B.B. Radak, D. Batani, T. Desai, M. Bussoli, Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses. Appl. Surf. Sci. 254, 1377–1381 (2007)

    Article  ADS  Google Scholar 

  26. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)

    Article  Google Scholar 

  27. R. Grunwald, S.K. Das, A. Debroy, E. McGlynn, H. Messaoudi, in Nonlinear Optical Mechanism of Forming Periodical Nanostructures in Large Bandgap Dielectrics. IESC Proceedings Series (Institut d’Études Scientifiques de Cargèse, France, in press)

    Google Scholar 

  28. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Large area uniform nanostructures fabricated by direct femtosecond laser ablation, Opt. Express 16, 19354 (2008)

    Google Scholar 

  29. R. Wagner, J. Gottmann, A. Horn, E.W. Kreutz, Subwavelength ripple formation induced by tightly focused femtosecond laser radiation, Appl. Surf. Sci. 252, 8576–8579 (2006)

    Google Scholar 

  30. M. Huang, F. Zhao, Y. Feng, Y. Cheng, N. Xu, Z. Xu, Large area uniform nanostructures fabricated by direct femtosecond laser ablation, Opt. Express 16, 19354–19365 (2008)

    Google Scholar 

  31. Q.Z. Zhao, S. Malzer, L.J. Wang, Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses, Opt. Lett. 32, 1932–1934 (2007)

    Google Scholar 

  32. J. Gottmann, D. Wortmann, M.H. Jungemann, Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching, Appl. Surf. Sci. 255, 5641–5646 (2009)

    Google Scholar 

  33. S.K. Das, K. Dasari, A. Rosenfeld, R. Grunwald, Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus. Nanotechnology 21, 155302 (2010)

    Article  ADS  Google Scholar 

  34. S.K. Das, D. Dufft, A. Rosenfeld, J. Bonse, R. Grunwald, Femtosecond-laser induced quasi-periodic nanostructures on TiO2 surfaces. J. Appl. Phys. 105, 084912 (2009)

    Article  ADS  Google Scholar 

  35. S.K. Das, M. Rohloff, S. Höhm, A. Pfuch, W. Seeber, A. Rosenfeld, R. Grunwald, in Formation of Laser-Induced Periodic Structures in TiO 2 Crystals Depending on the Surface Quality. CLEO 2011 (Technical Digest, CTuAA2, USA, 2011)

    Google Scholar 

  36. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, New York, 1988)

    Google Scholar 

  37. S.K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, R. Grunwald, Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films. Proc. SPIE 7925, 7925–7942 (2011)

    Google Scholar 

  38. T. Shinonaga, N. Horigutchi, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, Femtosecond laser induced periodic nanostructures on titanium dioxide film for improving biocompatibility. Proc. SPIE 8609, 8609–8622 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Grunwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar Das, S., Messaoudi, H., Dasari, K., Seeber, W., Grunwald, R. (2015). Femtosecond-Laser Induced Nanostructures in TiO2 . In: Sakabe, S., Lienau, C., Grunwald, R. (eds) Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-12217-5_4

Download citation

Publish with us

Policies and ethics