Skip to main content

The Accuracy of Generalized Born Forces

  • Chapter
  • First Online:
Computational Electrostatics for Biological Applications

Abstract

Generalized Born (GB) models play an important role in biomolecular dynamics simulations. The issue of the accuracy of solvation forces computed according to these models has not been investigated in much detail to the best of our knowledge. Optimal atomic radii have been derived for most used force fields in order to reproduce molecular dynamics results under the Poisson–Boltzmann (PB) continuum model. In principle, if optimized radii are used, the PB model reproduces well MD simulations. For this reason in this contribution, we consider the most used GB model implementations in publicly available molecular dynamics simulation softwares and assess the accuracy of GB solvation forces compared to the reference PB ones. The results show that current implementations that compute forces by pairwise summations correlate very well with PB forces if judicious choice of model parameters is performed. The latter can be obtained by linear fitting of solvation self-energies computed by the most accurate GBR6 GB model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey SC (1989) Proteins 5:78

    Article  CAS  PubMed  Google Scholar 

  2. Davis ME, McCammon JA (1990) Chem Rev 90:509

    Article  CAS  Google Scholar 

  3. Honig B, Nicholls A (1995) Sci 268:1144

    Article  CAS  Google Scholar 

  4. Sagui C, Darden T (1999) Ann Rev Biophys Biomol Struct 28:155

    Article  CAS  Google Scholar 

  5. Keutsch FN, Saykally RJ (2001) Proc Natl Acad Sci USA 98:10533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hill T (1956) An introduction to statistical mechanics. Dover Publications, New York

    Google Scholar 

  7. Roux B, Simonson T (1999) Biophys Chem 78:1

    Article  CAS  PubMed  Google Scholar 

  8. Gilson MK, Given JA, Bush BL, McCammon JA (1997) Biophys J 72:1047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bardhan JP (2013) Comput Sci Disc 5:013001

    Article  Google Scholar 

  10. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  11. Debye P (1945) Polar molecules. Dover Publications, New York

    Google Scholar 

  12. Fogolari F, Brigo A, Molinari H (2002) J Mol Recogn 15:377

    Article  CAS  Google Scholar 

  13. Neves-Petersen MT, Petersen SB (2003) Biotechnol Annu Rev 9:315

    Article  CAS  PubMed  Google Scholar 

  14. Baker NA (2005) Curr Opin Struct Biol 15:137

    Article  CAS  PubMed  Google Scholar 

  15. Lu BZ, Zhou YC, Holst MJ, McCammon JA (2008) Commun Comput Phys 3:973

    Google Scholar 

  16. Boschitsch AH, Fenley MO (2011) J Chem Theory Comput 7:1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Warwicker J, Watson HC (1982) J Mol Biol 157:671

    Article  CAS  PubMed  Google Scholar 

  18. Gilson MK, Sharp KA, Honig BH (1987) J Comp Chem 9:327

    Article  Google Scholar 

  19. Davis M, McCammon J (1989) J Comp Chem 10:386

    Article  CAS  Google Scholar 

  20. Swanson JMJ, Wagoner JA, Baker NA, McCammon JA (2007) J Chem Theory Comp 3:170

    Article  CAS  Google Scholar 

  21. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978

    Article  CAS  Google Scholar 

  22. Nina M, Beglov D, Roux B (1997) J Phys Chem B 101:5239

    Article  CAS  Google Scholar 

  23. Nina M, Im W, Roux B (1999) Biophys Chem 78:89

    Article  CAS  PubMed  Google Scholar 

  24. Swanson JMJ, Adcock SA, McCammon JA (2005) J Chem Theory Comp 1:484

    Article  CAS  Google Scholar 

  25. Nguyen H, Roe DR, Simmerling C (2013) J Chem Theory Comput 9(4):2020

    Article  CAS  Google Scholar 

  26. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127

    Article  CAS  Google Scholar 

  27. Qiu D, Shenkin P, Hollinger F, Still W (1997) J Phys Chem 101:3005

    Article  CAS  Google Scholar 

  28. Bashford D, Case DA (2000) Annu Rev Phys Chem 51:129

    Article  CAS  PubMed  Google Scholar 

  29. Davis ME, McCammon JA (1990) J Comp Chem 11:401

    Article  CAS  Google Scholar 

  30. Gilson MK, Davis ME, Luty BA, McCammon JA (1993) J Phys Chem 97:3591

    Article  CAS  Google Scholar 

  31. Che J, Dzubiella J, Li B, McCammon JA (2008) J Phys Chem B 112:3058

    Article  CAS  PubMed  Google Scholar 

  32. Cai Q, Ye X, Luo R (2012) Phys Chem Chem Phys 14:15917

    Article  CAS  PubMed  Google Scholar 

  33. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comput Chem 22:128

    Article  Google Scholar 

  34. Xiao L, Cai Q, Ye X, Wang J, Luo R (2013) J Chem Phys 139:094106

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sharp KA, Honig B (1990) J Phys Chem 94:7684

    Article  CAS  Google Scholar 

  36. Fogolari F, Briggs JM (1997) Chem Phys Lett 281:135

    Article  CAS  Google Scholar 

  37. Fogolari F, Zuccato P, Esposito G, Viglino P (1999) Biophys J 76:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McCammon JA, Gelin BR, Karplus M (1976) Nature 267:585

    Article  Google Scholar 

  39. Gelin BR, Karplus M (1979) Biochemistry 18:1256

    Article  CAS  PubMed  Google Scholar 

  40. Camacho CJ, Zhang C (2005) Bioinformatics 21:2534

    Article  CAS  PubMed  Google Scholar 

  41. Gabdoulline RR, Wade RC (1996) J Phys Chem 100:3868

    Article  CAS  Google Scholar 

  42. Schaefer M, Froemmel C (1990) J Mol Biol 216:1045

    Article  CAS  PubMed  Google Scholar 

  43. Schaefer M, Karplus M (1996) J Phys Chem 100:1578

    Article  CAS  Google Scholar 

  44. Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246:122

    Article  CAS  Google Scholar 

  45. Grycuk T (2003) J Chem Phys 119:4817

    Article  CAS  Google Scholar 

  46. Tjong H, Zhou HX (2007) J Phys Chem 111:3055

    Article  CAS  Google Scholar 

  47. Tjong H, Zhou HX (2007) J Chem Phys 126:195102

    Article  PubMed  Google Scholar 

  48. Mongan J, Svrcek-Seiler WA, Onufriev A (2007) J Chem Phys 127:185101

    Article  PubMed  Google Scholar 

  49. Fogolari F, Corazza A, Esposito G (2013) J Chem Phys 138:054112

    Article  PubMed  Google Scholar 

  50. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comp Phys 151:283

    Article  CAS  Google Scholar 

  51. Tanner DE, Chan KY, Phillips JC, Schulten K (2011) J Chem Theory Comput 7:3635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comp Phys Comm 91:43

    Article  CAS  Google Scholar 

  53. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2010) Gromacs user manual version 4.5.4. http://www.gromacs.org

  54. Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824

    Article  CAS  Google Scholar 

  55. Onufriev A, Bashford D, Case DA (2004) Proteins Struct Funct Gen 55:383

    Google Scholar 

  56. Sanner M, Spehner JC, Olson A (1996) Biopolymers 38:305

    Article  CAS  PubMed  Google Scholar 

  57. Onufriev A, Case DA, Bashford D (2002) J Comput Chem 23:1297

    Article  CAS  PubMed  Google Scholar 

  58. Fogolari F, Corazza A, Yarra V, Jalaru A, Viglino P, Esposito G (2012) BMC Bioinform 13(Suppl 4):S18

    Article  CAS  Google Scholar 

  59. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL (2004) J Comp Chem 25:265

    Article  CAS  Google Scholar 

  60. Zhu J, Alexov E, Honig B (2005) J Phys Chem B 109:3008

    Article  CAS  PubMed  Google Scholar 

  61. MacKerell ADJ, Bashford D, Bellott M, Dunbrack RLJ, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WEI, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586

    Article  CAS  PubMed  Google Scholar 

  62. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comp Chem 24:1999

    Article  CAS  Google Scholar 

  63. Madura JD, Briggs JM, Wade R, Davis ME, Luty BA, Ilin A, Antosiewicz JA, Gilson MK, Bagheri B, Ridgway Scott L, McCammon JA (1995) Comput Commun Phys 91:57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Ministero dell’Istruzione, dell’Universita’ e della Ricerca (PRIN 2012A7LMS3_001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Fogolari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fogolari, F., Corazza, A., Esposito, G. (2015). The Accuracy of Generalized Born Forces. In: Rocchia, W., Spagnuolo, M. (eds) Computational Electrostatics for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-12211-3_7

Download citation

Publish with us

Policies and ethics