Skip to main content

Classical Density Functional Theory of Ionic Solutions

  • Chapter
  • First Online:
Computational Electrostatics for Biological Applications

Abstract

The basic structure of classical density functional theory (DFT) is reviewed from a rather general perspective. The treatment is then specialized to ionic solutions, describing the various possible extensions beyond the Poisson–Boltzmann level, that DFT offers, such as excluded volume effects, non-electrostatic interactions, connectivity (polymers) and ion correlations. The last effects are discussed rather thoroughly, with several explicit illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to emphasize the classical nature of these DFTs, given that quantum mechanical DFTs also are prevalent in the scientific literature. In the latter case, the energy (rather than free energy) is a functional of the electron (rather than particle) densities. The common use of the acronym “DFT” may lead to some confusion.

  2. 2.

    Other alternatives will be considered below, for ionic solutions

  3. 3.

    The correlation correction was estimated in a somewhat different manner from our suggestion above, but based on similar ideas.

References

  1. Forsman J (2004) A simple correlation-corrected Poisson–Boltzmann theory. J Phys Chem B 108:9236

    Article  CAS  Google Scholar 

  2. Woodward CE, Forsman J (2004) Density functional study of surface forces in solutions containing star-shaped polymers. Macromolecules 37:7034

    Article  CAS  Google Scholar 

  3. Woodward CE, Forsman J (2008) Density functional theory for polymer fluids with molecular weight polydispersity. Phys Rev Lett 100:098301

    Article  PubMed  Google Scholar 

  4. Kurut A, Henriques J, Forsman J, Skepö M, Lund M (2013) Role of histidine for charge regulation of unstructured peptides at interfaces and in bulk. Proteins 81:1097

    Article  Google Scholar 

  5. Forsman J (2009) Density functional theories of salt solutions. J Chem Phys 130:064901

    Article  PubMed  Google Scholar 

  6. Forsman J, Nordholm S (2012) Polyelectrolyte mediated interactions in colloidal dispersions: hierarchical screening, simulations and a new classical density functional theory. Langmuir 28:4069

    Article  CAS  PubMed  Google Scholar 

  7. Forsman J (2012) Polyelectrolyte adsorption: electrostatic mechanisms and nonmonotonic responses to salt addition. Langmuir 28:5138

    Article  CAS  PubMed  Google Scholar 

  8. Xie F, Nylander T, Utsel S, WĂĄgberg L, Ă…kesson T, Forsman J (2013) Polyelectrolyte adsorption on solid surfaces: theoretical predictions and experimental measurements. Langmuir 29:712421

    Google Scholar 

  9. Frink LJD, Salinger AG (2000) Two- and three dimensional nonlocal density functional theory for inhomogeneous fluids. I. Algorithms and parallelizations. J Comp Phys 159:407

    Article  Google Scholar 

  10. Frink LJD, Salinger AG (2000) Two- and three dimensional nonlocal density functional theory for inhomogeneous fluids. II. Solvated polymers as a benchmark problem. J Comp Phys 159:425

    Article  Google Scholar 

  11. Knepley MG, Karpeev DA, Davidivits S, Eisenberg RS, Gillespie D (2010) An efficient algorithm for classical density functional theory in three dimension: ionic solutions. J Chem Phys 132:124101

    Article  PubMed Central  PubMed  Google Scholar 

  12. Woodward CE (1991) A density functional theory for polymers: application to hard chain-hard sphere mixtures in slitlike pores. J Chem Phys 94:3183

    Article  CAS  Google Scholar 

  13. Freasier BC, Woodward CE, Nordholm S (1989) Generalized van der Waals theory of hard sphere oscillatory structure. J Chem Phys 90:5657

    Article  CAS  Google Scholar 

  14. Freasier BC, Nordholm S (1983) A generalized van der Waals model for solvation forces between solute particles in a colloidal suspension. J Chem Phys 79:4431

    Article  CAS  Google Scholar 

  15. Nordholm S, Haymet ADJ (1980) Generalized van der Waals theory. I. Basic formulation and application to uniform fluids. Aust J Chem 33:2013

    Article  CAS  Google Scholar 

  16. Nordholm S, Johnson M, Freasier BC (1980) Generalized van der Waals theory. III. The prediction of hard sphere structure. Aust J Chem 33:2139

    Article  CAS  Google Scholar 

  17. Nordholm S, Gibson J (1981) Generalized van der Waals theory. VII. Interface profiles and surface tension. Aust J Chem 34:2263

    Article  CAS  Google Scholar 

  18. van der Waals JD (1873) Over de Continuïteit van den Gas—en Vloeistoftoestand, thesis, Leiden

    Google Scholar 

  19. Johnson M, Nordholm S (1981) Generalized van der Waals theory. VI. Application to adsorption. J Chem Phys 75:1953

    Article  CAS  Google Scholar 

  20. Wu J, Zhidong L (2007) Density functional theory of complex fluids. Ann Rev Phys Chem 58:85

    Article  CAS  Google Scholar 

  21. Tarazona P, Evans R (1984) A simple density functional theory for inhomogeneous liquids. Mol Phys 52:847

    Article  CAS  Google Scholar 

  22. Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636

    Article  CAS  Google Scholar 

  23. Evans R (1992) Density functionals in the theory of nonuniform fluids. In: Henderson D (ed) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York, pp 85–175. ISBN 0-8247-8711-0

    Google Scholar 

  24. Tarazona P (1984) A density functional theory of melting. Mol Phys 52:81

    Article  CAS  Google Scholar 

  25. Gouy G (1910) Sur la constitution de la charge electrique ala surface d’un electrolyte. J Phys 9:457

    CAS  Google Scholar 

  26. Guldbrand L, Jönsson B, Wennerström H, Linse P (1984) Electrical double layer forces. A Monte Carlo study. J Chem Phys 84:2221

    Article  Google Scholar 

  27. Kjellander R, Marcelja S (1984) Correlation and image charge effects in electric double layers. Chem Phys Lett 112:49

    Article  CAS  Google Scholar 

  28. Kjellander R, Åkesson T, Jönsson B, Marcelja S (1992) A comparison of the anisotropic HNC and Monte Carlo simulations. J Chem Phys 97:1424

    Article  CAS  Google Scholar 

  29. Abbas Z, Gunnarsson M, Ahlberg E, Nordholm S (2001) Corrected Debye–Hückel analysis of surface complexation. I. Bulk salt limit. J Colloid Interface Sci 243:11–30

    Article  CAS  Google Scholar 

  30. Abbas Z, Gunnarsson M, Ahlberg E, Nordholm S (2002) Corrected Debye–Hückel theory of salt solutions: size asymmetry and effective diameters. J Phys Chem B 106:1403

    Article  CAS  Google Scholar 

  31. Nordholm S (1984) Simple analysis of the thermodynamic properties of the one-component plasma. Chem Phys Lett 105:302

    Article  CAS  Google Scholar 

  32. Penfold R, Nordholm S, Jönsson B, Woodward CE (1990) A simple analysis of ion-ion correlation in polyelectrolyte solutions. J Chem Phys 92:1915

    Article  CAS  Google Scholar 

  33. Penfold R, Nordholm S, Jönsson B, Woodward CE (1991) A simple analysis of the classical hard sphere one component plasma. I. Hole corrected Debye–Hückel theory. J Chem Phys 95:2048

    Article  Google Scholar 

  34. Penfold R, Nordholm S, Nichols N (2005) Simple analysis of the thermodynamic properties for classical plasmas. J Stat Mech: Theory Expt, P06009. ISSN 1742–5468

    Google Scholar 

  35. Nordholm S (1984) Generalized van der Waals theory. XII. Application to ionic solutions. Aust J Chem 37:1

    Article  CAS  Google Scholar 

  36. Rosenfeld Y (1993) Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J Chem Phys 98:8126

    Article  CAS  Google Scholar 

  37. Tang Z, Scriven LE, Davis HT (1992) Interactions between primitive electrical double layers. J Chem Phys 97:9258

    Article  CAS  Google Scholar 

  38. Åkesson T, Jönsson B (1991) Monte Carlo simulations of colloidal stability—beyond the Poisson-Boltzmann approximation. Electrochim Acta 36:1723

    Article  Google Scholar 

  39. Debye P, Hückel E (1923) De la theorie des electrolytes. I. Abaissement du point de congelation et phenomenes associes. Phys Z 24:185–206

    CAS  Google Scholar 

  40. Hierrezuelo J, Szilagyi I, Vaccaro A, Borkovec M (2010) Probing nanometer-thick polyelectrolyte layers adsorbed on oppositely charged particles by dynamic light scattering. Macromolecules 43:9108

    Article  CAS  Google Scholar 

  41. Beresford-Smith B, Chan DYC, Mitchell DJ (1985) The electrostatic interaction in colloidal systems with low added electrolyte. J Coll Int Sci 105:216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Forsman .

Editor information

Editors and Affiliations

Appendix: The Hole Corrected Debye–Hückel Theory

Appendix: The Hole Corrected Debye–Hückel Theory

We include a summary of the Debye–Hückel hole (DHH) theory, closely following the original descriptions [29–34]. This entails a correlation-corrected theory of the one-component plasma, OCP. In the OCP, one charged species is treated explicitly, whereas the other serves as a neutralizing background charge. Let us assume that the explicit ions carry a charge \(q\) (valency \(z\)), and that the bulk density is \(n_b\). We will furthermore put a “tagged” particle at the origin. The (configurational) free energy can then be expressed as a functional of the ion density surrounding our central ion:

$$\begin{aligned} \beta {\fancyscript{F}}[n(\mathbf{r})] = \int \ n(\mathbf{r}) (\ln n(\mathbf{r}) + 1)\,{\mathrm {d}}\mathbf{r}\;+\; z^2l_B \int \ {\varDelta n}(\mathbf{r}) \left( \frac{1}{2} \int \frac{ {\varDelta n}(\mathbf{r}^{\prime }) }{ |\mathbf{r} - \mathbf{r}^{\prime }| } d\mathbf{r}^{\prime } + \frac{1}{|\mathbf{r}|}\,{\mathrm {d}}\mathbf{r} \right) \nonumber \\ \end{aligned}$$
(2.31)

where \(\varDelta n(\mathbf{r})=n(\mathbf{r})-n_{b}\) is the deviation of the ion density from its bulk value. Minimizing this functional leads to the anticipated Boltzmann distribution:

$$\begin{aligned} n(r) = n_{b}e^{-\beta q\psi (r)} \end{aligned}$$
(2.32)

where the potential \(\psi \) is given by:

$$\begin{aligned} \psi (r) = \frac{q}{4\pi \varepsilon _{0}\varepsilon _r} \left( \frac{1}{r} + \int \frac{{\varDelta n}(\mathbf{r}^{\prime })}{|\mathbf{r} - \mathbf{r}^{\prime }|}\,{\mathrm {d}}\mathbf{r}^{\prime } \right) \end{aligned}$$
(2.33)

Upon linearisation, we end up at the Debye–Hückel level:

$$\begin{aligned} {\varDelta n}(r) = \frac{-\kappa ^{2} \exp ( -\kappa r)}{4\pi r}, \qquad \beta \kappa ^{2} = \frac{n_{b}q^{2}}{\varepsilon _{0}\varepsilon _r}. \end{aligned}$$
(2.34)

The electrostatic coupling strength, \(\varGamma \), is a convenient dimensionless quantity, defined as:

$$\begin{aligned} \varGamma = \frac{l_Bz^{2}}{a} \end{aligned}$$
(2.35)

where \(a={\bigl (4\pi n_{b}/3\bigr )}^{-1/3}\) measures the radius of a spherical volume per particle. The (potential) energy per particle, \(u\), can be neatly expressed in terms of \(\varGamma \):

$$\begin{aligned} \beta u = - \frac{\sqrt{3}}{2} \, \,\varGamma ^{3/2} \end{aligned}$$
(2.36)

A charge integration gives us the electrostatic free energy per particle, \(f\):

$$\begin{aligned} \beta f = \beta \int \limits _{0}^{\varGamma } \frac{{\mathrm {d}}\varGamma ^{\prime }}{\varGamma ^{\prime }} \ u(\varGamma ^{\prime }) = - \frac{1}{\sqrt{3}} \varGamma ^{3/2} \end{aligned}$$
(2.37)

At this Debye–Hückel level, the radial distribution function is:

$$\begin{aligned} g_{\mathrm {DH}}(r) = 1 - \frac{\kappa ^{2}}{4\pi n_{b}}\frac{1}{r}\exp (-\kappa r) \, \, . \end{aligned}$$
(2.38)

As Nordholm pointed out [31], \(g_{\mathrm {DH}}(r)\) becomes negative at small \(r\), which of course is unphysical. In the DHH theory, this is avoided via the introduction of a correlation hole, of radius \(h\), surrounding the central ion:

$$\begin{aligned} g(r) = {\left\{ \begin{array}{ll} 0, &{} \qquad r < h \\ 1 - {\displaystyle {\frac{h}{r}}} \exp \bigl (-\kappa (r - h)\bigr ), &{} \qquad r \ge h \end{array}\right. } \, \, . \end{aligned}$$
(2.39)

The size of the “hole” is adjusted, such that it contains one ion, assuming a uniform bulk density \(n_b\):

$$\begin{aligned} n_{b} \int \limits _{0}^{\infty } {\mathrm{d}}r \ 4\pi r^{2} \bigl ( 1 - g(r) \bigr ) = 4 \pi n_{b} \left[ \frac{h^{3}}{3} + \int \limits _{h}^{\infty } {\mathrm{d}}r \ rh \exp \bigl (-\kappa (r - h)\bigr ) \right] = 1. \end{aligned}$$
(2.40)

Thus:

$$\begin{aligned} h = \kappa ^{-1} \left[ {\left( 1 + (3\varGamma )^{3/2} \right) }^{1/3} - 1 \right] . \end{aligned}$$
(2.41)

With the introduction of such a hole, the electrostatic energy becomes:

$$\begin{aligned} \beta u = -\frac{1}{4} \left[ {\left( 1 + (3\varGamma )^{3/2} \right) }^{2/3} - 1 \right] . \end{aligned}$$
(2.42)

whereas a charge integration gives:

$$\begin{aligned} \beta f = \frac{1}{4} \left( 1 + \frac{2\pi }{3\sqrt{3}} + \ln \left( \frac{\omega ^{2} + \omega + 1}{3} \right) - \omega ^{2} - \frac{2}{\sqrt{3}}\arctan \left( \frac{2\omega +1}{\sqrt{3}} \right) \right) \, \, , \end{aligned}$$
(2.43)

where

$$\begin{aligned} \omega = {\left( 1 + (3\varGamma )^{3/2} \right) }^{1/3} \, \, . \end{aligned}$$
(2.44)

The DHH theory has proven remarkably accurate for a range of different coupling strengths [33], and model systems [29, 30, 32, 34].

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Forsman, J., Woodward, C., Szparaga, R. (2015). Classical Density Functional Theory of Ionic Solutions. In: Rocchia, W., Spagnuolo, M. (eds) Computational Electrostatics for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-12211-3_2

Download citation

Publish with us

Policies and ethics