Skip to main content

Self-Inclusion Complexes of Monofunctionalized Beta-Cyclodextrins as Host–Guest Interaction Model Systems and Simple and Sensitive Testbeds for Implicit Solvation Methods

  • Chapter
  • First Online:
Computational Electrostatics for Biological Applications

Abstract

The validation of biomolecular computational approaches represents a critical step to assess their general reliability and possible fields of application. However, it requires a combined selection of protocols and representative model systems which needs great attention, since both choices can bias the results, or alter the method sensitivity to the numerous parameters that describe the systems. Here we propose the use of self-included monofunctionalized \(\beta \)-cyclodextrins (mf-\(\beta \)-CDs) to evaluate and compare solvation methods. For that end, we characterized the self-inclusion processes of three mf-\(\beta \)-CDs by molecular dynamics simulations performed with both explicit solvent and three implicit solvent implementations based on the generalized Born approach. In particular, we monitored the sensitivity to the different solvation models of the resulting trajectories and of several structural and energetic parameters usually adopted to study cyclodextrins or solvation methods. Our results confirmed that mf-\(\beta \)-CD are useful testbeds to compare solvation approaches because their properties are particularly affected by the relative stabilities of hydrophobic versus polar interactions and by energy contributions implicitly or explicitly dependent on exposed molecular surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041. doi:10.1073/pnas.181342398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Beà I, Gotsev MG, Ivanov PM et al (2006) Chelate effect in cyclodextrin dimers: a computational (MD, MM/PBSA, and MM/GBSA) study. J Org Chem 71:2056–2063. doi:10.1021/jo052469o

    Article  PubMed  Google Scholar 

  3. Bellia F, La Mendola D, Pedone C et al (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781. doi:10.1039/b718436k

    Article  CAS  PubMed  Google Scholar 

  4. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451. doi:10.1021/j100785a001

    Article  CAS  Google Scholar 

  5. Case DA, Darden TA, Cheatham TEIII et al (2012) AMBER 12

    Google Scholar 

  6. Chang C-E, Gilson MK (2004) Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. J Am Chem Soc 126:13156–13164. doi:10.1021/ja047115d

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Chang C-E, Gilson MK (2004) Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys J 87:3035–3049. doi:10.1529/biophysj.104.049494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Choi Y-J, Lee J-H, Cho K-W et al (2005) Binding geometry of inclusion complex as a determinant factor for aqueous solubility of the flavonoid/\(\beta \)-cyclodextrin complexes based on molecular dynamics simulations. Bull Korean Chem Soc 26:1203–1208. doi: 10.5012/bkcs.2005.26.8.1203

    Article  CAS  Google Scholar 

  9. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046. doi:10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  10. Di Blasio B, Galdiero S, Saviano M et al (1996) Functionalized cyclodextrins: synthesis and structural characterization of 6-deoxy-6-4-[N-tert-butoxycarbonyl-2-aminoethyl]-imidazolyl-cyclomaltoheptaose. Supramol Chem 7:47–54. doi:10.1080/10610279608054995

    Article  Google Scholar 

  11. Godschalk F, Genheden S, Söderhjelm P, Ryde U (2013) Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys Chem Chem Phys 15:7731–7739. doi:10.1039/c3cp00116d

    Article  CAS  PubMed  Google Scholar 

  12. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929. doi:10.1063/1.1755656

  13. Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  14. Hawkins GD, Cramer CJ, Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19824–19839. doi:10.1021/jp961710n

    Article  CAS  Google Scholar 

  15. Hirayama F (1999) Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev 36:125–141. doi:10.1016/S0169-409X(98)00058-1

    Article  CAS  PubMed  Google Scholar 

  16. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. doi:10.1021/ci100275a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Impellizzeri G, Pappalardo G, D’Alessandro F et al (2000) Solid state and solution conformation of 6-[4-[N-tert-ButoxycarbonylN-(N\(^{\prime } \)-ethyl)propanamide]imidazolyl]-6-deoxycyclomaltoheptaose: evidence of self-inclusion of the Boc group within the \(\beta \)-cyclodextrin cavity. Eur J Org Chem 2000:1065–1076. doi:10.1002/(SICI)1099-0690(200003)2000:6<1065::AID-EJOC1065>3.0.CO;2-I

  18. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. parameterization and validation. J Comput Chem 23:1623–1641. doi:10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  20. Kirschner KN, Yongye AB, Tschampel SM et al (2008) GLYCAM06: a generalizable biomolecular force field. carbohydrates. J Comput Chem 29:622–655. doi:10.1002/jcc.20820

    Article  CAS  PubMed  Google Scholar 

  21. Konecny R, Baker NA, McCammon JA (2012) iAPBS: a programming interface to adaptive Poisson-Boltzmann solver (APBS). Comput Sci Discov 5:1–11. doi:10.1088/1749-4699/5/1/015005

    Article  Google Scholar 

  22. Li J, Loh XJ (2008) Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev 60:1000–1017. doi:10.1016/j.addr.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  23. Li W-S, Wang S-C, Hwang T-S, Chao I (2012) Substituent effect on the structural behavior of modified cyclodextrin: a molecular dynamics study on methylated \(\beta \)-CDs. J Phys Chem B 116:3477–3489. doi: 10.1021/jp207985q

    Article  CAS  PubMed  Google Scholar 

  24. Liu H-Y, Zou X (2006) Electrostatics of ligand binding: parametrization of the generalized Born model and comparison with the Poisson-Boltzmann approach. J Phys Chem B 110:9304–9313. doi:10.1021/jp060334w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025. doi:10.1021/js950534b

    Article  CAS  PubMed  Google Scholar 

  26. Mongan J, Simmerling C, McCammon JA et al (2007) Generalized Born model with a simple, robust molecular volume correction. J Chem Theory Comput 3:156–169. doi:10.1021/ct600085e

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins 55:383–394. doi:10.1002/prot.20033

    Article  CAS  PubMed  Google Scholar 

  28. Raffaini G, Ganazzoli F, Malpezzi L et al (2009) Validating a strategy for molecular dynamics simulations of cyclodextrin inclusion complexes through single-crystal X-ray and NMR experimental data: a case study. J Phys Chem B 113:9110–9122. doi:10.1021/jp901581e

    Article  CAS  PubMed  Google Scholar 

  29. Rekharsky M, Inoue Y (2000) Chiral recognition thermodynamics of \(\beta \)-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy-entropy compensation effect. J Am Chem Soc 122:4418–4435. doi: 10.1021/ja9921118

    Article  CAS  Google Scholar 

  30. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1918. doi:10.1021/cr970015o

    Article  CAS  PubMed  Google Scholar 

  31. Rekharsky MV, Inoue Y (2002) Solvent and guest isotope effects on complexation thermodynamics of \(\alpha \)-, \(\beta \)-, and 6-amino-6-deoxy-\(\beta \)-cyclodextrins. J Am Chem Soc 124:12361–12371. doi: 10.1021/ja027031+

    Article  CAS  PubMed  Google Scholar 

  32. Rizzarelli E, Vecchio G (1999) Metal complexes of functionalized cyclodextrins as enzyme models and chiral receptors. Coord Chem Rev 188:343–364. doi:10.1016/S0010-8545(99)00059-4

    Article  CAS  Google Scholar 

  33. Roe DR, Okur A, Wickstrom L et al (2007) Secondary structure bias in generalized Born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation. J Phys Chem B 111:1846–1857. doi:10.1021/jp066831u

    Article  CAS  PubMed  Google Scholar 

  34. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  35. Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533. doi:10.1021/jp015514e

    Article  CAS  Google Scholar 

  36. Srivastava HK, Sastry GN (2012) Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. J Chem Inf Model 52:3088–3098. doi:10.1021/ci300385h

    Article  CAS  PubMed  Google Scholar 

  37. Tsui V, Case DA (2001) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 56:275–291. doi:10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E

  38. Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98:2045–2076. doi:10.1021/cr970025p

    Article  CAS  PubMed  Google Scholar 

  39. Van Helden SP, van Eijck BP, Janssen LH (1992) The conformational behaviour of complexes of alpha-cyclodextrin with p-chlorophenol and p-hydroxybenzoic acid in water as studied by molecular dynamics simulations. J Biomol Struct Dyn 9:1269–1283. doi:10.1080/07391102.1992.10507991

    Article  PubMed  Google Scholar 

  40. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230. doi:10.1002/(SICI)1096-987X(19990130)20:2<217:AID-JCC4>3.0.CO;2-A

  41. Wickstrom L, He P, Gallicchio E, Levy RM (2013) Large scale affinity calculations of cyclodextrin host-guest complexes: understanding the role of reorganization in the molecular recognition process. J Chem Theory Comput 9:3136–3150. doi:10.1021/ct400003r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhu J, Alexov E, Honig B (2005) Comparative study of generalized Born models: Born radii and peptide folding. J Phys Chem B 109:3008–3022. doi:10.1021/jp046307s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Amodeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vitale, R.M., Amodeo, P. (2015). Self-Inclusion Complexes of Monofunctionalized Beta-Cyclodextrins as Host–Guest Interaction Model Systems and Simple and Sensitive Testbeds for Implicit Solvation Methods. In: Rocchia, W., Spagnuolo, M. (eds) Computational Electrostatics for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-12211-3_14

Download citation

Publish with us

Policies and ethics