Skip to main content

Using Structural and Physical–Chemical Parameters to Identify, Classify, and Predict Functional Districts in Proteins—The Role of Electrostatic Potential

  • Chapter
  • First Online:
Computational Electrostatics for Biological Applications

Abstract

In this chapter, we will overview the role of the local protein structure environment (which we will call here: nano-environment) in maintaining the functional purpose of different protein districts (defined as protein structure sites delimited by their functional objectives). Namely, we suggest that the local environment at each protein point and/or region reflects, not only its constitutional/structural role, but also its contribution to providing necessary and required characteristics for the functional objective that such particular site is supposed to have. For instance, protein–protein communication is executed through protein interfaces, and amino acid residues belonging to that site must have some specific characteristics which do not only differentiate them from the free surface residues, but also make possible that two very specific proteins may engage, bind and by doing so, perform their function. Similarly, enzyme function is normally related to activity of its catalytic site residues (CSRs). Obviously, these very peculiar residues are embedded in a very specific nano-environment (defined also by the contribution of CSR). Consequently, the enzyme function could be described in terms of characteristics of the CSRs and their surroundings. Based on the above considerations, and assuming that the local nano-environment is not only defining the protein district function, but it is also a concept for which we can design specific metrics to quantify it, and a specific set of properties to describe it, we studied the role of different descriptors and found that, together with hydrophobicity, electrostatic potential is of fundamental importance. As we will better detail in the course of this work, the electrostatic potential might not always be the top ranked property defining the nano-environment of interest, but it is, however, always present, contributing significantly in carving proper protein district characteristics for specific structure/function purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neshich G, Mancini A, Yamagishi M, Kuser P, Fileto R, Baudet C, Pinto I, Montagner A, Palandrani J, Krauchenco J, Torres R, Souza S, Togawa R, Higa RH (2004) Java protein dossier: a novel web-based data visualization tool for comprehensive analysis of protein structure, Nucl Acids Res 32(Web Server issue):W595–W601

    Google Scholar 

  2. Neshich G, Togawa R, Mancini AL, Kuser PR, Yamagishi MEB, Pappas G Jr, Torres WV, Campos TF, Ferreira LL, Luna FM, Oliveira AG, Miura RT, Inoue MK, Horita LG, de Souza DF, Dominiquini F, Álvaro A (2003) STING millennium: a web based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. Nucl Acids Res 31(13):3386–3392

    Google Scholar 

  3. Neshich G, Borro LC, Higa R, Kuser P, Yamagishi M, Franco EH, Krauchenco J, Fileto R, Ribeiro A, Bezerra G, Velludo T, Jimenez T, Furukawa N, Teshima H, Kitajima K, Bava A (2005)  Diamond STING server. Nucl Acids Res 33(Web Server issue):W29–35

    Google Scholar 

  4. Neshich G, Mancini AL, Yamagishi MEB, Kuser PR, Fileto R, Pinto IP, Palandrani JF, Krauchenco JN, Baudet C, Montagner AJ, Higa RH (2005) STING report: convenient web-based application for graphic and tabular presentations of protein sequence, structure and function descriptors from the STING database. Nucl Acids Res 33(Database Issue):D269–D274

    Google Scholar 

  5. Oliveira SRM, Almeida GV, Souza’ KRR, Rodrigues DN, Kuser-Falcão PR, Yamagishi MEB, Santos EH, Vieira FD, Jardine JG, Neshich G (2007) STING\_RDB: a relational database of structural parameters for protein analysis with support for data warehousing and data. Mining Genet Mol Res 6(4):911–922

    Google Scholar 

  6. Radic Z, Kirchhoff P, Quinn D, McCammon J et al (1997) Electrostatic influence on the kinetics of ligand. J Biol Chem 272

    Google Scholar 

  7. Sheinerman F, Norel R, Honig B (2000) Electrostatic aspects of protein-protein interactions. Curr Opin 10:153–159

    Google Scholar 

  8. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Google Scholar 

  9. Rocchia W, Neshich G (2007) Electrostatic potential calculation for biomolecules— creating a database of pre-calculated values reported on a per residue basis for all PDB protein structures. Genet Mol Res 6(4):923–936

    Google Scholar 

  10. Togawa RC, Kuser PR, Higa RH, Yamagishi MEB, Mancini AL, Neshich G (2004) STING Millennium Suite: integrated software for extensive analyses of 3d structures of proteins and their complexes. BMC Bioinformatics 5(1):107

    Google Scholar 

  11. Mancini A, Higa R, Oliveira A et al (2004) STING contacts: a web-based application for identification and analysis of amino acid contacts within protein structure and across protein interfaces. Bioinformatics 20(13):2145–2147

    Google Scholar 

  12. Neshich G, Mazoni I, Oliveira S, Yamagishi M, Kuser-Falcao P, Borro L, Morita D, Souza K, Almeida G, Rodrigues D et al (2006) The star STING server: a multiplatform environment for  protein structure analysis. Genet Mol Res 5:717–722

    Google Scholar 

  13. Borro L et al (2006) Predicting enzyme class from protein structure using Bayesian classification. Genet Mol Res 5:193–202

    Google Scholar 

  14. Fernandez J, Hayashi M, Camargo A et al (2003) Structural basis of the lisinopril-binding specificity in N- and C-domains of human somatic ACE. Biochem Biophys Res Comm 308(2):219–226

    Google Scholar 

  15. de Freitas S, de Mello L, da Silva M et al (1997) Analysis of the black-eyed pea trypsin and chymotrypsin inhibitor alpha-chymotrypsin complex. FEBS Lett 409(2):121–127

    Google Scholar 

  16. Marcellino L, Neshich G, de Sa MG et al (1996) Modified 2S albumins with improved tryptophan content are correctly expressed in transgenic tobacco plants. FEBS Lett 385(3):154–158

    Google Scholar 

  17. Simoes M, Bahia D, Zerlotini A et al (2007) Single nucleotide polymorphisms identification in expressed genes of Schistosoma mansoni. Mol Biochem Parasitol 154(2):134–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Melo R, Ribeiro C, Murray C et al (2007) Finding protein-protein interaction patterns by contact map matching. Genet Mol Res 6(4):946–963

    CAS  PubMed  Google Scholar 

  19. Braghini C, Neshich I, Neshich G et al (2013) New mutation in the myocilin gene segregates with juvenile-onset open-angle glaucoma in a Brazilian family. Gene 523:50–57

    Google Scholar 

  20. Dias-Lopes C, Neshich I, Neshich G et al (2013) Identification of new sphingomyelinases D in pathogenic fungi and other pathogenic organisms. PLoS ONE 8(11)

    Google Scholar 

  21. Nadzirin N, Firdaus-Raih M (2012) Proteins of unknown function in the protein data bank (PDB): an inventory of true uncharacterized proteins and computational tools for their analysis. Int J Mol Sci 13(10):12761–12772

    Google Scholar 

  22. FTP site for PDB/RCSB [Online]. Available: ftp://ftp.wwwpdb.org

  23. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The protein data bank. Nucl Acids Res 28:235–242

    Google Scholar 

  24. Henrick K, Krissinel E (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Google Scholar 

  25. Sridharan S, Nicholls A, Honig B (1992) A new vertex algorithm to calculate solvent accessible surface areas. Biophys J 61:A174

    Google Scholar 

  26. UniProt Consortium (2009) The universal protein resource (UniProt) 2009. Nucleic Acid Res 37(Database issue):D169–D174

    Google Scholar 

  27. Martin AC (2005) Mapping PDB chains to UniProtKB entries. Bioinformatics 1;21 (23):4297–4301

    Google Scholar 

  28. Bourne P, Addess K, Bluhm W, Chen L, Deshpande N, Feng Z, Fleri W, Green R, Merino-Ott J, Townsend-Merino W, Weissig H, Westbrook J, Berman H (2004) The distribution and query systems of the RCSB protein data bank. Nucl Acids Res 1;32(Database issue):D223–D225

    Google Scholar 

  29. PDB, RCSB - PDB [Online]. Available: ftp://resources.rcsb.org/sequence/clusters/clusters95.txt

  30. Tusnády G, Dosztányi Z, Simon I (2004) Transmembrane proteins in the protein data bank: identification and classification. Bioinformatics 20(17):2964–2972

    Google Scholar 

  31. Jayasinghe S, Hristova K, White SH (2001) A database of membrane protein topology. Protein Sci 10:455–458

    Google Scholar 

  32. Porter CT, Bartlett1 GJ, Thornton JM (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucl Acids Res 32:D129–D133

    Google Scholar 

  33. Yang J, Tiyyagura A, Chen F, Honaver V (1999) Academia.edu, 1999. [Online]. Available:http://www.academia.edu/2791981/Feature_subset_selection_for_rule_induction_using_RIPPER

  34. Cohen W (1995) Fast effective rule induction. Morgan, San Francisco

    Google Scholar 

  35. Higa R, Togawa R, Neshich G (2004) ConSSeq: a web-based application for analysis of amino acid conservation based on HSSP database and within context of structure. Bioinformatics 20(12):1983–1985

    Article  CAS  PubMed  Google Scholar 

  36. Higa R, Neshich G (2006) Building multiple sequence alignments with a flavor of HSSP alignments. Genet Mol Res 3(1):127–137

    Google Scholar 

  37. Porollo A, Meller J (2007) Prediction-based fingerprints of protein-protein interactions. Proteins 66(3):630–645

    Google Scholar 

  38. Justel A, Peña D, Zamar R (1997) A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat Prob Lett 35(3):251–259

    Google Scholar 

  39. Ribeiro C, Togawa RC, Neshich IA, Mazoni I, Mancini AL, Minardi RCdM, Silveira CHd, Jardine JG, Santoro MM, Neshich G (2010) Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors. BMC Struct Biol 10:36

    Google Scholar 

  40. Xenarios I, Eisenberg D (2001) Protein interaction databases. Curr Opin Biotech 12:334–339

    Article  CAS  PubMed  Google Scholar 

  41. Ponsting l, Kabir T, Gorse D, Thornton J (2005) Morphological aspects of oligomeric protein structures. Prog Biophys Mol Biol 89:9–35

    Google Scholar 

  42. Reichmann D, Rahat O, Cohen M, Neuvirth H, Schreiber G (2007) The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 17:67–76

    Google Scholar 

  43. Alloy P, Russell R (2006) Structural systems biology: modelling protein interactions. Nature Rev Mol Cell Biol 7:188–197

    Google Scholar 

  44. Kitano H (2002) Computational systems biology. Nature 420(6912):206–210

    Google Scholar 

  45. Kastritis P, Bonvin A (2013) Molecular origins of binding affinity: seeking the Archimedean point. Curr Opin Struct Biol, pii: S0959-440X(13)00121-8. 19 July 2013, doi:10.1016/j.sbi.2013.07.001

  46. Sali A, Blundell T (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Google Scholar 

  47. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Google Scholar 

  48. Lybrand T (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5(2):224–228

    Google Scholar 

  49. Beeley L, Duckworthy D (1996) The impact of genomics on drug design. Drug Discov Today 7:474–480

    Google Scholar 

  50. Parrill A (1996) Evolutionary and genetic methods in drug design. Drug Discov Today 1(8):514–521

    Google Scholar 

  51. Wade R (1997) ‘Flu’ and structure-based drug design. Structure 5(9):1139–1144

    Google Scholar 

  52. Zsoldosa Z, Szaboa I, Szaboa Z, Johnson A (2003) Software tools for structure based rational drug design. J Mol Struct: Theochem 659–665, 666–667

    Google Scholar 

  53. Acharya C, Coop A, Polli J, MacKerell A Jr (2011) Recent advances in Ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 7(1):10–22

    Google Scholar 

  54. Janin J, Wodak S (2007) The third CAPRI assessment meeting. Structure.15:755–759

    Google Scholar 

  55. Zhou H, Quin S (2007) Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics 23(17):2203–2209

    Google Scholar 

  56. Neuvirth H, Raz R, Schreiber G (2004) ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J Mol Biol 338:181–199

    Article  CAS  PubMed  Google Scholar 

  57. Bradford J, Westhead D (2005) Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21:1487–1494

    Article  CAS  PubMed  Google Scholar 

  58. Liang S, Zhang C, Liu S, Zhou Y (2006) Protein binding site prediction using an empirical scoring function. Nucl Acids Res 34(13):3698–3707

    Google Scholar 

  59. Porollo A, Meller J (2007) Prediction-based fingerprints of protein-protein interactions. Proteins 66:630–645

    Article  CAS  PubMed  Google Scholar 

  60. Chen H, Zhou H-X (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61:21–35

    Google Scholar 

  61. Qin S, Zhou H-X (2007) Meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics 23(24):3386–3387

    Google Scholar 

  62. Young L, Jernigan R, Covell D (1994) A role for surface hydrophobicity in protein-protein recognition. Protein Sci 3(5):717–729

    Google Scholar 

  63. Chothia C, Janin J (1975) Principles of protein-protein recognition. Nature 256:705–708

    Article  CAS  PubMed  Google Scholar 

  64. Tsai C, Lin S, Wolfson H, Nussinov R (1997) Studies of protein-protein interfaces; a statistical analysis of the hydrophobic effect. Protein Sci 6:53–64 [PubMed: 9007976]

    Google Scholar 

  65. Ben-Naim A (2006) On the driving forces for protein-protein association. J Chem Phys 125:024901–0249010

    Google Scholar 

  66. Argos et al (1988) An investigation of domain and subunit interfaces. Protein Eng 2:101–113

    Google Scholar 

  67. Hu Z, Ma B, Wolfson J, Nussinov R (2000) Proteins-structure function. Genetics  39:331–342

    Google Scholar 

  68. Jones S, Thornton J (1996) Proc Natl Acad Sci USA 93:13–20

    Google Scholar 

  69. Kyte J, Doolittle R (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Google Scholar 

  70. Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53:595–623

    Google Scholar 

  71. Engelman D, Steitz T, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biomol Struct 15:321–353

    Article  CAS  Google Scholar 

  72. Deng H, Hentati A, Tainer J, Iqba lZ, Cayabyab A, Hung W, Getzoff E, Hu P, Herzfeldt B, Roos R et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261(5124):1047–1051

    Google Scholar 

  73. Yim H-S, Kang J-H, Chock PB, Stadtman ER, Yim MB (1997) A familial amyotrophic lateral sclerosis-associated A4V Cu, Zn-superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J Biol Chem 272(14):8861–8863

    Google Scholar 

  74. Cardoso R, Thayer M, DiDonato M, Lo T, Bruns C, Getzoff E, Tainer J (2002) Insights into Lou Gehrig’s disease from the structure and instability of the A4V mutant of human Cu, Zn superoxide dismutase. J Mol Biol 324(2):247–256

    Google Scholar 

  75. DiDonato M, Craig L, Huff M, Thayer M, Cardoso R, Kassmann C, Lo T, Bruns C, Powers E, Kelly J, Getzoff E, Tainer J (2003) ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 332(3):601–615

    Google Scholar 

  76. Schmidlin T, Kennedy B, Daggett V (2009) Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V. Biophys J 97(6):1709–1718

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Neshich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neshich, G. et al. (2015). Using Structural and Physical–Chemical Parameters to Identify, Classify, and Predict Functional Districts in Proteins—The Role of Electrostatic Potential. In: Rocchia, W., Spagnuolo, M. (eds) Computational Electrostatics for Biological Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-12211-3_12

Download citation

Publish with us

Policies and ethics