Advertisement

More than Metamorphosis: The Silkworm Experiments of Toyama Kametarō and his Cultivation of Genetic Thought in Japan’s Sericultural Practices, 1894–1918

  • Lisa OnagaEmail author
Chapter
Part of the Archimedes book series (ARIM, volume 40)

Abstract

The scientific investigations of Mendelism in silkworms by Japanese scientist Toyama Kametarō during the early 1900s aired questions about biology beyond the genetic determinants of inheritance. As he sought to instill scientific thought in the craft of sericulture, Toyama gained insights into different kinds of hereditary phenomena, and he considered the serious implications of what we call environmental effects. Toyama explored various instances of non-Mendelian inheritance that did not seem obviously to reflect the predictive Mendelian ratios of dominant to recessive traits, and he communicated his experiment-based ideas to farmers and sericulturists in the years surrounding the formation of a set of national sericultural policies in 1911. Analysis of his efforts to convey new or unsettled scientific ideas to instill practical changes in silkworm improvement contributes to a fuller historical understanding of his biological investigations and what he thus left behind for other researchers to study. The changing knowledge of the silkworm’s sexual reproduction serves as an illustration of how basic scientific understanding of genetics grew in Japan.

Keywords

Bombyx mori Richard Goldschmidt Gynandromorphs Japanese agriculture Japanese genetics Mendelism Non-Mendelian inheritance Sericulture Silk Toyama Kametarō 

References

  1. Allen, Garland E. 1980. The historical development of time law of intersexuality and its philosophical implications. In Experientia supplementum: Richard Goldschmidt: Controversial geneticist and creative biologist, ed. Leonie K. Pieternick, 41–48. Basel: Birkhäuser.CrossRefGoogle Scholar
  2. Bateson, William. 1900. Hybridisation and cross-breeding as a method of scientific investigation. Journal of the Royal Horticultural Society 24:59–66.Google Scholar
  3. Bateson, William. 1909. Miscellaneous, exceptional and unconformable phenomena. In Mendel’s Principles of Heredity. Cambridge: Cambridge University Press.Google Scholar
  4. Biffen, Rowland H. 1905. Mendel’s laws of inheritance and wheat breeding. Journal of Agricultural Science 1:4–48.CrossRefGoogle Scholar
  5. Boveri, Theodor. 1915. Über die Entstehung der Eugsterschen Zwitterbienen. Archiv für Entwicklungsmechanik der Organismen 41:264–311.CrossRefGoogle Scholar
  6. Bowler, Peter J. 1989. The Mendelian revolution: The emergence of hereditarian concepts in modern science and society. Baltimore: Johns Hopkins University Press.Google Scholar
  7. Cock, Alan G., and Donald R. Forsdyke. 2008. Treasure your exceptions: The science and life of William Bateson. New York: Springer.CrossRefGoogle Scholar
  8. Correns, Carl. 1900. G. Mendel’s Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft 18:158–168.Google Scholar
  9. Correns, Carl. 1901. Bastarde zwischen Maisrassen, mit besonderer Berücksichtigung der Xenien. Stuttgart: E. Nägele.Google Scholar
  10. Coutagne, Georges. 1902. Recherches expérimentales sur l’hérédité chez les vers à soie. Bulletin scientifique de la France et de la Belgique 37:1–193.Google Scholar
  11. Darwin, Charles. 1868/1998. The variation of animals and plants under domestication, Vol. 2, introd. Harriet Ritvo. Baltimore: Johns Hopkins University Press.Google Scholar
  12. Dietrich, Michael R. 2008. Striking the hornet’s nest: Richard Goldschmidt’s rejection of the particulate gene. In Rebels, mavericks, and heretics in biology, ed. Oren Solomon Harman and Michael R. Dietrich, 120–125. New Haven: Yale University Press.Google Scholar
  13. Fukuda, Kibun. 1990. Waga kuni no sanshigyō wo sasaeta omona sanshikagaku to gijutsu [Major sericultural science and technology that supported our country’s silk industry]. Tokyo: Dainihon Sanshi Shimbunsha.Google Scholar
  14. Godart, Gerard Rainier Clinton. 2009. Darwin in Japan: Evolutionary theory and Japan’s modernity, (1820–1970). Ph.D. dissertation, University of Chicago, 2009.Google Scholar
  15. Goldschmidt, Richard. 1912. Erblichkeitsstudien an Schmetterlingen 1. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 7 (1): 1–62.Google Scholar
  16. Goldschmidt, Richard. 1916. Experimental intersexuality and the sex-problem. The American Naturalist 50:705–718.CrossRefGoogle Scholar
  17. Goldschmidt, Richard. 1960. In and out of the ivory tower: The autobiography of Richard B. Goldschmidt. Seattle: University of Washington Press.Google Scholar
  18. Goldschmidt, Richard, and K. Katsuki. 1927. Erblicher Gynandromorphismus und somatische Mosaikbildung bei Bombyx mori L. Biologisches Zentralblat 47:45–54.Google Scholar
  19. Goldschmidt, Richard, and K. Katsuki. 1928. Cytologie des erblichen Gynandromorphismus von Bombyx mori L. Biologisches Zentralblat 48:685–699.Google Scholar
  20. Goldschmidt, Richard, and K. Katsuki. 1931. Vierte mitteilung uber erblichen Gynandromorphismus und somatische Mosaikbildung bei Bombyx mori L. Biologisches Zentralblat 51:58–74.Google Scholar
  21. Ishida, Magotaro. 1908. Kashusan shiikuho [Method of rearing summer-fall silkworms]. Tokyo: Shotoku Taishi Sankyo Hojunkai.Google Scholar
  22. Ishida, Magotaro. 1913. Shunkashusan shaken hosakuho [Policy method for testing spring, summer-fall silkworms]. Tokyo: Dainihon Sangyo Gakkai.Google Scholar
  23. Katsuki, Kitō. 1917. Kōzatsuichidai ni okeru mayu no katachi ni tuite [On the shapes of F1 hybrid cocoons]. Dainihon sanshikaihō; 26:710–717.Google Scholar
  24. Kikkawa, Hideo. 1943. The maternal inheritance in the egg-color of Bombyx Mori. Japanese Journal of Genetics 19:125–126.CrossRefGoogle Scholar
  25. Kitamura, Chikayoshi, and Minoru Nozaki. 2004. Norin Suisansho ni okeru sanshi shiken kenkyu no rekishi [History of sericultural experiments of the Ministry of Agriculture, Forestry, and Fisheries]. Tsukuba-shi: Nogyo Seibutsu Shigen Kenkyujo.Google Scholar
  26. Lock, R. H. 1906. Studies in plant breeding in the tropics. III. Experiments with maize. Annals of the Royal Botanic Gardens, Peradeniya 3 (2): 96–184.Google Scholar
  27. Machida, Jirō. 1940. Toyama sensei no gyōseki [The achievements of Toyama Kametarō]. In Toyama Kametarō kinenroku [Commemoration of Toyama Kametarō], ed. Nagamusa Takeuchi, 1–8. Koayumura, Kanagawa Prefecture: Toyama Naoyasu.Google Scholar
  28. Matsubara, Yoko. 2004. The reception of Mendelism in Japan, 1900–1920. Historia Scientiarum 13:232–240.Google Scholar
  29. Matsui, Keiichi. 1967. Kenkyūjo ni okeru hakase no inshō [Impressions of the Professor at the Research Institute], Nihon sanshigaku zasshi [Journal of Sericultural Science of Japan] 36:461–462.Google Scholar
  30. Morgan, Thomas Hunt. 1905. An alternative interpretation of the origin of gynandromorphous insects. Science 21:632–634.CrossRefGoogle Scholar
  31. Morgan, T. H. 1914. Mosaics and gynandromorphs in Drosophila. Proceedings of the Society for Experimental Biology and Medicine 11:171–172.CrossRefGoogle Scholar
  32. Morgan, T. H. 1916. The Eugster gynandromorph bees. The American Naturalist 50:39–45.CrossRefGoogle Scholar
  33. Morgan, T. H., A. H. Sturtevant, H. J. Muller, and C. B. Bridges. 1915. The mechanism of Mendelian heredity. New York: Henry Holt.CrossRefGoogle Scholar
  34. Morgan, Thomas Hunt, Calvin Blackman Bridges, and Alfred Henry Sturtevant. 1919. The origin of gynandromorphs. Washington: Carnegie Institution.Google Scholar
  35. Moriwaki, Yasuko. 2010. Toyama Kametarō to meijiki no sanshigyō ni okeru kaiko no ‘shurui kairyō [K. Toyama and silkworm breeding in Japan, from 1891 to 1913]. Kagakushi kenkyū; [Japanese Journal of History of Science] II 49:163–173.Google Scholar
  36. Nakamura, Takafusa, and Kōnosuke Odaka. 2003. The economic history of Japan, 1600–1990: Vol. 3, Economic history of Japan 1914–1955: A dual structure. Oxford: Oxford University Press.Google Scholar
  37. Olby, Robert. 1966. The origins of Mendelism. Chicago: University of Chicago Press.Google Scholar
  38. Onaga, Lisa. 2010a. Tracing the Totsuzen in Tanaka’s silkworms: An exploration of the establishment of Bombyx mori mutant stocks. Preprints of the Max-Planck Institute for the History of Science 393:109–117.Google Scholar
  39. Onaga, Lisa. 2010b. Toyama Kametarō and Vernon Kellogg: Silkworm inheritance experiments in Japan, Siam, and the United States, 1900–1912. Journal of the History of Biology 43:215–264.Google Scholar
  40. Onaga, Lisa. 2012. Silkworms, science, and nation: A sericultural history of genetics in modern Japan. Ph.D. dissertation, Cornell University.Google Scholar
  41. Onaga, Lisa. 2013. Bombyx and bugs in Meiji Japan: Toward a multispecies history? Scholar & Feminist, 11(3). http://sfonline.barnard.edu/life-un-ltd-feminism-bioscience-race/bombyx-and-bugs-in-meiji-japan-toward-a-multispecies-history/. Accessed 3 July 2014.
  42. Osanai-Futahashi, M., K.-i. Tatematsu, K. Yamamoto, J. Narukawa, K. Uchino, T. Kayukawa, T. Shinoda, Y. Banno, T. Tamura, and H. Sezutsu. 2012. Identification of the Bombyx red egg gene reveals involvement of a novel transporter family gene in late steps of the insect ommochrome biosynthesis pathway. Journal of Biological Chemistry 287:17706–17714.CrossRefGoogle Scholar
  43. Richmond, Marsha. 2007. The cell as the basis for heredity, development, and evolution: Richard Goldschmidt’s program of physiological genetics. In From embryology to evo-devo: A history of evolutionary development, ed. Manfred D. Laublichler and Jane Maienschein, 169–211. Cambridge: MIT Press.Google Scholar
  44. Sander, Klaus. 1994. True alternatives: Boveri and Morgan arguing about the origins of honeybee gynanders. Roux’s Archives of Developmental Biology 203:175–177.CrossRefGoogle Scholar
  45. Sapp, Jan. 1987. Beyond the gene: Cytoplasmic inheritance and the struggle for authority in genetics. Oxford: Oxford University Press.Google Scholar
  46. Standfuss, Max. 1900. Synopsis of experiments in hybridization and temperature made with lepidoptera up to the end of 1898. London: West, Newman.Google Scholar
  47. Sturtevant, Alfred H. 1965. A history of genetics. New York: Harper & Row.Google Scholar
  48. Takeuchi, Nagamasa, ed. 1940. Toyama Kametarō kinenroku [Commemoration of Toyama Kametarō]. Koayumura, Kanagawa Prefecture: Toyama Naoyasu.Google Scholar
  49. Tanaka, Yoshimaro. 1916. Genetic studies of the silkworm. The Journal of the College of Agriculture, Tohoku Imperial University, Sapporo, Japan 7:129–255.Google Scholar
  50. Tanaka, Yoshimaro. 1922. Sex-linkage in the silkworm. Journal of Genetics 12:163–178.CrossRefGoogle Scholar
  51. Tanaka, Yoshimaro. 1967. Nihon idengaku no yoake [Dawn of genetics in Japan]. In Idengaku no Ayumi: Menderu idenhōsoku 100nen kinen [Upon the steps of Mendel: In commemoration of the Mendel centennial anniversary], ed. Menderu idenhōsoku 100nen kinen shuppan iinkai [Publication Committee of Mendel Centennial Anniversary in Japan], 317–318. Tokyo: Shokabo Co.Google Scholar
  52. Toyama, Kametarō. 1894. On the spermatogenesis of the silk-worm. Bulletin of the College of Agriculture, Tokyo Imperial University 2:125–157.Google Scholar
  53. Toyama, Kametarō. 1895. Sanji no seishokuki [The sex organs of silkworm larvae]. Dōbutsugaku zasshi [Journal of Zoology] 8:339–344.Google Scholar
  54. Toyama, Kametarō. 1899. Kaiko no shuruihikaku shiken [Silkworm variety comparison experiments]. Fukushima-ken sangyō gakkō hōkuku 3:1–70.Google Scholar
  55. Toyama, Kametarō. 1900. Hyakunen izen ni okeru honpō kaiko no shurui [Varieties of silkworms in Japan 100 years ago]. Dainihon sanshikaihō; 9:1–9.Google Scholar
  56. Toyama, Kametarō. 1901. Santainai no shin kikan [New organ inside silkworm body]. Dainihon sanshikaihō; [Bulletin of the Great Japan Silk Association] 108:1–5.Google Scholar
  57. Toyama, Kametarō. 1902. Contributions to the study of silk-worms. I. On the embryology of the silk-worm. Bulletin of the College of Agriculture, Tokyo Imperial University 5:73–118.Google Scholar
  58. Toyama, Kametarō. 1906a. Sanran no kouzoku narabi ni haishi no hattatsu [Structure of silkworm eggs and development of embryos]. Nōgakukai kaihō; [Bulletin of the Agricultural Association] 28:28–40.Google Scholar
  59. Toyama, Kametarō. 1906b. Studies on the hybridology of insects, I. On some silkworm crosses, with special reference to Mendel’s law of heredity. Bulletin of the College of Agriculture, Tokyo Imperial University 7:259–393.Google Scholar
  60. Toyama, Kametarō. 1909a. Futatabi shurui kairyō to kaiko no iden ni tuite ichigensu [Another brief comment on breed improvement and silkworm genetics]. Dainihon sanshikaihō; 200:1–6.Google Scholar
  61. Toyama, Kametarō. 1909b. Gutaiteki shurui kairyō hō” [Definite breed improvement method]. Dainihon sanshikaihō; 204:3–6.Google Scholar
  62. Toyama, Kametaro. 1909c. Jikken shinkaron to nōgyō tono kankei [The relationship between theory of experimental evolution and agriculture]. In Kōenshū; [Collected lectures]. Niigata: Niigata-ken nōyōkai.Google Scholar
  63. Toyama, Kametarō. 1912. On the varying dominance of certain white breeds of the silkworm, Bombyx mori, L. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 7:252–88.Google Scholar
  64. Toyama, Kametarō. 1913. Maternal inheritance and Mendelism (first contribution). Journal of Genetics 2:351–405.CrossRefGoogle Scholar
  65. Toyama, Kametarō. 1914. Sanshu no hanashi [Story of silkworm seeds]. Tokyo: Dainihon Sangyō Gakkai.Google Scholar
  66. Toyama, Kametarō. n.d. Ikimono no seishitu wo irekaeru hō [Method to exchange the nature of living things]. Shōnen [The Boy] 76:138–46.Google Scholar
  67. Toyama, Kametarō, and Shirō Murakoshi. 1898. Furanki saisei shiken [Silkworm egg incubation experiment]. Fukushima-ken sangyō gakkō hōkuku [Bulletin of the Fukushima Prefecture Sericulture School] 1:1–11.Google Scholar
  68. Toyama, Kametarō, and Shigetane Ishiwatari. 1896. Jikken santai kaibō: Fu sanbyo narabini kenbikyo shiyoho [Experiments in silkworm dissection: How to use microscope with silkworm disease, supplement]. Tokyo: Fuzanbo.Google Scholar
  69. Tschermak, Erich. 1900. Über künstliche Kreuzung bei Pisum sativum. Berichte der Deutschen Botanischen Gesellschaft 18:232–239.Google Scholar
  70. Tsujita, Mitsuo. 1961. Maternal effect of + lem gene on pterine reductase of Bombyx mori. Idengaku Zasshi [Japanese Journal of Genetics] 36:337–346.Google Scholar
  71. Vilmorin, Philippe de, ed. 1913. IVe conférence internationale de génétique, Paris, 1911: Comptes rendus et rapports. Paris: Masson et Cie, 1913.Google Scholar
  72. Vries, Hugo de. 1900. Sur la loi de disjonction des hybrides. Comptes rendus de l’Académie des Sciences Paris 130:845–847.Google Scholar
  73. Yokoyama, Tadao. 1959. Silkworm genetics illustrated. Tokyo: Japan Society for the Promotion of Science.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.History Programme, School of Humanities and Social SciencesNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations