Skip to main content

Wave and Wind Theories

  • Chapter
  • First Online:
Offshore Energy Structures
  • 2720 Accesses

Abstract

As it is mentioned in the previous chapter, wave and wind are the main sources of environmental loads. The first step in performing rational structural dynamic analysis to find load-effects is setting realistic environmental conditions. The most important for renewable offshore energy structures are the wind and wave at the park site. However, at some offshore locations, other parameters may be important (e.g. air and sea temperature, tidal conditions, current and ice conditions); some of those are mentioned in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bingham, H. B., & Madsen, P. A. (2003). Nonlinear irregular wave forces on near-shore structures by a high-order Boussinesq method. 18th IWWFB. Le Croisic (France): 18th IWWFB.

    Google Scholar 

  • Brorsen, M. (2007). Non-linear waves. Denmark: Aalborg University. ISSN:1901-7286

    Google Scholar 

  • Chakrabarti, S. K. (1987). Hydrodynamics of offshore structures. WIT press.

    Google Scholar 

  • Chappelear, J. E. (1961). Direct numerical calculation of wave properties. Journal of Geophysical Research, 66, 501–508.

    Article  MathSciNet  Google Scholar 

  • Dean, R. G. (1965). Stream function representation of nonlinear ocean waves. Journal of Geophysical Research, 70, 4561–4572.

    Article  Google Scholar 

  • DNV. (2007). Environmental conditions and environmental loads. Norway: RECOMMENDED PRACTICE, DNV-RP-C205.

    Google Scholar 

  • Faltinsen, O. (1993). Sea loads on ships and offshore structures. UK: Cambridge University Press.

    Google Scholar 

  • Fenton, J. D. (1972). A ninth order solution for the solitary wave. Journal of Fluid Mechanics, 53, 257–271.

    Google Scholar 

  • Fenton, J. D. (1979). A high order cnoidal wave theory. Journal of Fluid Mechanics, 94, 129–161.

    Google Scholar 

  • Fenton, J. D. (1990). Nonlinear wave theories. The sea volume 9: Ocean engineering science. New Zealand.

    Google Scholar 

  • Hansen, M. O. (2008). Aerodynamics of wind turbines (2nd ed.). UK: Earthscan.

    Google Scholar 

  • Hoven, I. v. (1957). Power spectrum of horizontal wind speed in the frequency range of 0.0007–900 cycles per hour. Journal of Metrology, 14(2), 160–164.

    Article  Google Scholar 

  • Johannessen, K., Meling, T. S., & Haver, S. (2001). Joint distribution for wind and waves in the northern North Sea, ISOPE.

    Google Scholar 

  • Karimirad, M. (2011). Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems. PHD thesis, NTNU, Norway.

    Google Scholar 

  • Karimirad, M., & Moan, T. (2011). Extreme dynamic structural response analysis of catenary moored spar wind turbine in harsh environmental conditions. Journal of Offshore Mechanics and Arctic Engineering, 133(4), 041103.

    Article  Google Scholar 

  • Knut, T., & Sverre, H. (2004). Simplified double peak spectral model for ocean waves. ISOPE, (Paper No. 2004-JSC-193), France.

    Google Scholar 

  • Larsen, T. J., & Hansen, A. M. (2008). HAWC2 user manual. Denmark: DTU.

    Google Scholar 

  • Lysen, E. H. (1983). Introduction to wind energy. SWD Publications, SWD 82-1: The Netherlands.

    Google Scholar 

  • Mann, J. (1994). The spatial structure of neutral atmospheric surface-layer turbulence. Journal of Fluid Mechanics, 273, 141–168.

    Article  MATH  Google Scholar 

  • Newman, J. N. (1977). Marine hydrodynamics. USA: MIT Press.

    Google Scholar 

  • Ochi, M. K., & Hubble, E. N. (1976). On six-parameters wave Spectra (pp. 301–328). Proceedings of 15th Coastal Engineering, Honolulu, Hawaii.

    Google Scholar 

  • Rienecker, M. M., & Fenton, J. D. (1981). A Fourier approximation method for steady water waves. Journal of Fluid Mechanics, 104, 119–137.

    Article  MATH  Google Scholar 

  • Spera, D. A. (1998). Wind turbine technology fundamental concepts of wind turbine. New York: ASME press.

    Google Scholar 

  • USFOS. (2010). USFOS, hydrodynamic, theory description. Norway. http://www.usfos.no/manuals/usfos/theory/documents/Usfos_Hydrodynamics.pdf. Accessed Aug 2013.

  • Water Waves. (2011). Department of Mechanical Engineering, MIT Marine Hydrodynamics course, Lecture 14, Chapter 6 - Water Waves. http://web.mit.edu/2.20/www/lectures/lec14/lecture14.pdf. Accessed Nov 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Karimirad .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karimirad, M. (2014). Wave and Wind Theories. In: Offshore Energy Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-12175-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12175-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12174-1

  • Online ISBN: 978-3-319-12175-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics