Skip to main content

Some Remarks on the Krein-von Neumann Extension of Different Laplacians

  • Conference paper
  • First Online:
Semigroups of Operators -Theory and Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 113))

Abstract

We discuss the Krein-von Neumann extensions of three Laplacian-type operators—on discrete graphs, quantum graphs, and domains. In passing we present a class of one-dimensional elliptic operators such that for any \(n\in \mathbb {N}\) infinitely many elements of the class have \(n\)-dimensional null space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We stress that \(\fancyscript{I}\fancyscript{R}^{-1}\fancyscript{I}^T\) is the discrete Laplacian of on \(\mathsf {G}\) with respect to the weight \(\rho ^{-1}\), whereas in Sect. 3 we have considered the discrete Laplacian with respect to the weight \(\rho \). We can think of weights \(\rho ,\rho ^{-1}\) as resistances (proportional to a wire’s length) and conductances (inversely proportional to a wire’s length), respectively. We need not care about realizations of \(\fancyscript{I}\fancyscript{R}^{-1}\fancyscript{I}^T\), since \(\mathsf {V}\) is finite and hence \(\fancyscript{I}\fancyscript{R}^{-1}\fancyscript{I}^T\) is bounded by assumption.

References

  1. M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl. The Krein-von Neumann extension and its connection to an abstract buckling problem. Math. Nachr., 283:165–179, 2010.

    Google Scholar 

  2. M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl. A Survey on the Krein-von Neumann Extension, the Corresponding Abstract Buckling Problem, and Weyl-type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains. In M. Demuth and W. Kirsch, editors, Mathematical Physics, Spectral Theory and Stochastic Analysis, pages 1–106, Berlin, 2013. Springer-Verlag.

    Google Scholar 

  3. M.S. Ashbaugh, F. Gesztesy, M. Mitrea, and G. Teschl. Spectral theory for perturbed Krein Laplacians in nonsmooth domains. Adv. Math., 223:1372–1467, 2010.

    Google Scholar 

  4. W. Arendt, G. Metafune, D. Pallara, and S. Romanelli. The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions. Semigroup Forum, 67:247–261, 2003.

    Google Scholar 

  5. T. Ando and K. Nishio.Positive selfadjoint extensions of positive symmetric operators. Tokohu Math. J., 22:65–75, 1970.

    Google Scholar 

  6. A. Alonso and B. Simon.The Birman–Kreǐn–Vishik theory of self-adjointextensions of semibounded operators. J. Operator Th., 4:251–270, 1980.

    Google Scholar 

  7. W. Arendt and T. ter Elst. Sectorial forms and degenerate differential operators. J. Operator Th., 67:33–72, 2012.

    Google Scholar 

  8. A. Bátkai, P. Binding, A. Dijksma, R. Hryniv, and H. Langer. Spectral problems for operator matrices. Math. Nachr., 278:1408–1429, 2005.

    Google Scholar 

  9. B.M. Brown and J.S. Christiansen. On the Krein and Friedrichs extensions of a positive Jacobioperator. Expos. Mathematicae, 23:179–186, 2005.

    Google Scholar 

  10. G. Berkolaiko and P. Kuchment. Introduction to Quantum Graphs, volume 186 of Math. Surveys and Monographs. Amer. Math. Soc., Providence, RI, 2013.

    Google Scholar 

  11. A. Bobrowski and D. Mugnolo. On moment preserving cosine families and semigroups in C [0,1]. J. Evol. Equ., 13:715–735, 2013.

    Google Scholar 

  12. G.M. Coclite, A. Favini, G.R. Goldstein, J.A. Goldstein, and S. Romanelli. Continuous dependence on the boundary conditions for the Wentzell Laplacian. Semigroup Forum, 77:101–108, 2008.

    Google Scholar 

  13. S. Cardanobile and D. Mugnolo. Parabolic systems with coupled boundary conditions. J. Differ. Equ., 247:1229–1248, 2009.

    Google Scholar 

  14. E.B. Davies. Heat Kernels and Spectral Theory, volume 92 of Cambridge Tracts Math. Cambridge Univ. Press, Cambridge, 1989.

    Google Scholar 

  15. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  16. K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.

    Google Scholar 

  17. A. Favini, G.R. Goldstein, J.A. Goldstein, and S. Romanelli. The heat equation with generalized Wentzell boundary condition. J. Evol. Equ., 2:1–19, 2002.

    Google Scholar 

  18. M. Fukushima. Dirichlet forms and Markov processes, volume 23 of Math. Library. North-Holland, Amsterdam, 1980.

    Google Scholar 

  19. L.J. Grady and J.R. Polimeni. Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer-Verlag, New York, 2010.

    Google Scholar 

  20. G. Greiner. Perturbing the boundary conditions of a generator. Houston J. Math, 13:213–229, 1987.

    Google Scholar 

  21. G. Grubb. Spectral asymptotics for the “soft” selfadjoint extension of a symmetric elliptic differential operator. J. Operator Th., 10:9–20, 1983.

    Google Scholar 

  22. G. Grubb. Krein-like extensions and the lower boundedness problem for elliptic operators. J. Differ. Equ., 252:852–885, 2012.

    Google Scholar 

  23. S. Haeseler, M. Keller, D. Lenz, and R. Wojciechowski. Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectral Theory, 2:397–432, 2012.

    Google Scholar 

  24. X. Huang, M. Keller, J. Masamune, and R.K. Wojciechowski. A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal., 265:1556–1578, 2013.

    Google Scholar 

  25. M. Keller and D. Lenz. Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math., 666:189–223, 2012.

    Google Scholar 

  26. M. Kramar Fijavž, D. Mugnolo, and E. Sikolya. Variational and semigroup methods for waves and diffusion in networks. Appl. Math. Optim., 55:219–240, 2007.

    Google Scholar 

  27. M.G. Krein. The theory of self-adjoint extensions of semi-bounded hermitian transformations and its applications. I. Mat. Sbornik, 20:431–495, 1947.

    Google Scholar 

  28. K.A. Makarov and E. Tsekanovskii. On \(\mu \)-scale invariant operators. Meth. Funct. Anal. Topol., 13:181–186, 2007.

    Google Scholar 

  29. D. Mugnolo. Gaussian estimates for a heat equation on a network. Networks Het. Media, 2:55–79, 2007.

    Google Scholar 

  30. D. Mugnolo. Asymptotics of semigroups generated by operator matrices. Arabian J. Math., DOI: 10.1007/s40065-014-0107-4, 2014.

  31. D. Mugnolo. Semigroup Methods for Evolution Equations on Networks. Understanding Complex Systems. Springer-Verlag, Berlin, 2014.

    Google Scholar 

  32. R. Nagel, editor. One-Parameter Semigroups of Positive Operators, volume 1184 of Lect. Notes Math. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  33. A. Posilicano. Markovian extensions of symmetric second order elliptic differential operators. DOI: 10.1002/mana.201300277.

  34. M. Rigoli, M. Salvatori, and M. Vignati. Subharmonic functions on graphs. Israel J. Math., 99:1–27, 1997.

    Google Scholar 

  35. K. Schmüdgen. Unbounded Self-adjoint Operators on Hilbert Space, volume 265 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2012.

    Google Scholar 

  36. M. Taylor. Partial Differential Equations II, volume 116. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  37. A.D. Venttsel’. On boundary conditions for multidimensional diffusion processes. Theor. Probab. Appl., 4:164–177, 1960.

    Google Scholar 

  38. J.L. Vázquez and E. Vitillaro. Heat equation with dynamical boundary conditions of reactive-diffusive type. J. Differ. Equ., 250:2143–2161, 2011.

    Google Scholar 

  39. W. Woess. Random Walks on Infinite Graphs and Groups, volume 138 of Cambridge Tracts Math. Cambridge Univ. Press, Cambridge, 2000.

    Google Scholar 

  40. P. Zemánek. Krein-von Neumann and Friedrichs extensions for second order operators on time scales. Int. J. Dynamical Systems and Differential Equations, 3:132–144, 2011.

    Google Scholar 

Download references

Acknowledgments

The author is supported by the Land Baden–Württemberg in the framework of the Juniorprofessorenprogramm—research project on “Symmetry methods in quantum graphs.” The author is grateful to Matthias Keller (Jena) for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delio Mugnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mugnolo, D. (2015). Some Remarks on the Krein-von Neumann Extension of Different Laplacians. In: Banasiak, J., Bobrowski, A., Lachowicz, M. (eds) Semigroups of Operators -Theory and Applications. Springer Proceedings in Mathematics & Statistics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-12145-1_5

Download citation

Publish with us

Policies and ethics