Skip to main content

Convolution Operators as Generators of One-Parameter Semigroups

  • Conference paper
  • First Online:
Semigroups of Operators -Theory and Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 113))

  • 1213 Accesses

Abstract

Let \(G\) be an \(m\times m\)-matrix-valued rapidly decreasing distribution on \(\mathbb R^{n}\) and let \(E\) be one of the following locally convex vector spaces: \(\fancyscript{S}(\mathbb R^{n};\mathbb C^{m})\), \(\fancyscript{D}_{L^{2}}(\mathbb R^{n};\mathbb C^{m})\), \((\fancyscript{O}_{\mu })(\mathbb R^{n};\mathbb C^{m})\) where \(\mu \in [0,\infty \mathclose [\), \(\fancyscript{S}'(\mathbb R^{n};\mathbb C^{m})\). Then the convolution operator \((G\,*)|_{E}\) is equal to the infinitesimal generator of a one-parameter \((C_{0})\)-semigroup of operators belonging to \(L(E;E)\) if and only if the weak Petrovskiĭ condition is satisfied:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fact that if \(G\in \fancyscript{O}'_{C}(\mathbb R^{n};M_{m\times m})\), then \((G\,*)|_{E}\in L(E;E)\) for every of l.c.v.s. \(E\) listed above follows from [15, Sect. VII.5,Theorem IX.1\(^{\circ }\),p. 244]. See also [9, Vol. 2,Sect. CBIII,point(iii)ofTheoremonp. 40].

  2. 2.

    A similar argument was earlier used in proof of the E.R. van Kampen uniqueness theorem for solutions of ODEs. See [8] and [3, Sect. III.7].

  3. 3.

    Independently of the theory of reflexivity, barrelledness of \(\fancyscript{S}(\mathbb R^{n};\mathbb C^{m})\) follows from the fact that \(\fancyscript{S}(\mathbb R^{n};\mathbb C^{m})\) is a Fréchet space.

References

  1. Bourbaki, N.: Éléments de Mathématique. Livre V, Espaces Vectoriels Topologiques. Hermann, Paris (1953, 1955); Russian transl.: Moscow (1959).

    Google Scholar 

  2. Gårding, L.: Linear hyperbolic partial differential equations with constant coefficients. Acta Math. 85, 1–62 (1951).

    Google Scholar 

  3. Hartman, P.: Ordinary Differential Equations. Wiley (1964).

    Google Scholar 

  4. Hille, E., Phillips, R.S.: Functional Analysis and Semigroups. Amer. Math. Soc., Providence (1957).

    Google Scholar 

  5. Hörmander, L.: On the theory of general partial differential operators. Acta Math. 94, 161–248 (1955).

    Google Scholar 

  6. Hörmander, L.: Linear Partial Differential Operators. Springer (1963).

    Google Scholar 

  7. Hörmander, L.: The Analysis of Partial Differential Operators, Vol. I, Distribution Theory and Fourier Analysis, Vol. II. Differential Operators with Constant Coefficients. Springer (1983).

    Google Scholar 

  8. van Kampen, E.R.: Remarks on systems of ordinary differential equations. Amer. J. Math. 59, 144–152 (1937).

    Google Scholar 

  9. Khoan, V.K.: Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles, Vol. 1, 2. Vuibert, Paris (1972).

    Google Scholar 

  10. Kisyński, J.: The Petrovskiĭ correctness and semigroups of operators. arXiv:0910.1120v1 [math.FA], abstract in Intellectual Archive Bulletin, June 2012.

  11. Kisyński, J.: Equicontinuity and convergent sequences in the spaces \({{\fancyscript {O}}_{C}^{\prime }}\) and \({{\fancyscript {O}}_{M}}\). Bull. Polish Acad. Sci. Math. 59, 223–235 (2011).

    Google Scholar 

  12. Kisyński, J.: One-parameter semigroups in the convolution algebra of rapidly decreasing distributions. Colloq. Math. 128, 49–68 (2012).

    Google Scholar 

  13. Kisyński, J.: On the Cauchy problem for convolution equations. Colloq. Math. 133, 115–132 (2013).

    Google Scholar 

  14. Petrovskiĭ, I.G.: Über das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nichtanalytischen Funktionen. Bulletin de l’Université d’Etat de Moscou 1, no. 7, 1–74 (1938).

    Google Scholar 

  15. Schwartz, L.: Théorie des Distributions. Nouvelle éd., Hermann, Paris (1966).

    Google Scholar 

  16. Schwartz, L.: Les équations d’évolution liées au produit de composition. Ann. Inst. Fourier (Grenoble) 2, 19–49 (1950).

    Google Scholar 

  17. Sinclair, A.M.: Continuous Semigroups in Banach Algebras. London Math. Soc. Lecture Note Ser. 63, Cambridge Univ. Press (1982).

    Google Scholar 

  18. Ushijima, T.: On the generation and smoothness of semi-groups of linear operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19, 65–127 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kisyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kisyński, J. (2015). Convolution Operators as Generators of One-Parameter Semigroups. In: Banasiak, J., Bobrowski, A., Lachowicz, M. (eds) Semigroups of Operators -Theory and Applications. Springer Proceedings in Mathematics & Statistics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-12145-1_3

Download citation

Publish with us

Policies and ethics