Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 504 Accesses

Abstract

Molecules undergoing a chemical reaction, such as dissociation or ionization, are essentially few-particle quantum systems that dynamically evolve as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Ackermann et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1(6), 336–342 (2007)

    Article  ADS  Google Scholar 

  2. E. Allaria et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6(10), 699–704 (2012)

    Article  ADS  Google Scholar 

  3. V. Averbukh, L.S. Cederbaum, Calculation of interatomic decay widths of vacancy states delocalized due to inversion symmetry. J. Chem. Phys. 125, 094107 (2006)

    Article  ADS  Google Scholar 

  4. V. Averbukh, I.B. Müller, Mechanism of interatomic Coulombic decay in clusters. Phys. Rev. Lett. 93, 263002 (2004)

    Article  ADS  Google Scholar 

  5. V. Averbukh, L.S. Cederbaum, Interatomic electronic decay in endohedral fullerenes. Phys. Rev. Lett. 96, 053401 (2006)

    Article  ADS  Google Scholar 

  6. A. Barty et al., Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics 6(1), 35–40 (2012)

    Article  ADS  Google Scholar 

  7. R. Bonifacio, C. Pellegrini, L. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50(6), 373–378 (1984)

    Article  ADS  Google Scholar 

  8. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. 389(20), 457–484 (1927)

    Article  Google Scholar 

  9. B. Boudaïffa et al., Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458), 1658–1660 (2000)

    Article  ADS  Google Scholar 

  10. J.D. Bozek, AMO instrumentation for the LCLS X-ray FEL. Eur. Phys. J. Spec. Top. 169(1), 129–132 (2009)

    Article  Google Scholar 

  11. Cambridge Crystallographic Data Centre (2013), http://www.ccdc.cam.ac.uk/. Accessed Dec 2013

  12. L.S. Cederbaum, J. Zobeley, F. Tarantelli, Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778 (1997)

    Article  ADS  Google Scholar 

  13. H.N. Chapman et al., Femtosecond X-ray protein nanocrystallography. Nature 470(7332), 73–77 (2011)

    Article  ADS  Google Scholar 

  14. F.J. Comes, U. Nielsen, W.H.E. Schwarz, Inner electron excitation of iodine in the gaseous and solid phase. J. Chem. Phys. 58(6), 2230–2237 (1973)

    Article  ADS  Google Scholar 

  15. N.B. Delone, V.P. Krainov, AC Stark shift of atomic energy levels. Phys. Usp. 42(7), 669 (1999)

    Article  ADS  Google Scholar 

  16. M. Drescher et al., Time-resolved atomic inner-shell spectroscopy. Nature 419(6909), 803–807 (2002)

    Article  ADS  Google Scholar 

  17. P. Emma et al., First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 4(9), 641–647 (2010)

    Article  ADS  Google Scholar 

  18. T. Ergler et al., Quantum-phase resolved mapping of ground-state vibrational D2 wave packets via selective depletion in intense laser pulses. Phys. Rev. Lett. 97, 103004 (2006)

    Article  ADS  Google Scholar 

  19. B. Erk et al., Inner-shell multiple ionization of polyatomic molecules with an intense x-ray free-electron laser studied by coincident ion momentum imaging. J. Phys. B: At. Mol. Opt. Phys. 46(16), 164031 (2013)

    Article  ADS  Google Scholar 

  20. B. Erk et al., Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules. Phys. Rev. Lett. 110, 053003 (2013)

    Article  ADS  Google Scholar 

  21. J. Feldhaus, FLASH-the first soft x-ray free electron laser (FEL) user facility. J. Phys. B: At. Mol. Opt. Phys. 43(19), 194002 (2010)

    Article  ADS  Google Scholar 

  22. B. Fischer et al., Steering the electron in \({\rm {H}}_{2}^{+}\) by nuclear wave packet dynamics. Phys. Rev. Lett. 105, 223001 (2010)

    Article  ADS  Google Scholar 

  23. R.L. Fork, B.I. Greene, C.V. Shank, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671–672 (1981)

    Article  ADS  Google Scholar 

  24. T. Förster, Ein Beitrag zur Theorie der Photosynthese. Z. Naturforsch. 2b, 174–182 (1947)

    Google Scholar 

  25. G. Gelon et al., Coherence properties of the European XFEL. New J. Phys. 12(3), 035021 (2010)

    Article  ADS  Google Scholar 

  26. M. Göppert-Mayer, über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401(3), 273–294 (1931)

    Article  Google Scholar 

  27. P. Harbach et al., Intermolecular coulombic decay in biology: the initial electron detachment from FADH- in DNA photolyases. J. Phys. Chem. Lett. 4, 943 (2013)

    Article  Google Scholar 

  28. M. Hoener et al., Ultraintense X-Ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010)

    Article  ADS  Google Scholar 

  29. Z. Huang, I. Lindau, Free-electron lasers: SACLA hard-X-ray compact FEL. Nat. Photonics 6(8), 505–506 (2012)

    Google Scholar 

  30. T. Jahnke et al., Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139 (2010)

    Google Scholar 

  31. Y.H. Jiang et al., Investigating two-photon double ionization of \({\rm {D}}_{2}\) by XUVpump- XUV-probe experiments. Phys. Rev. A 81, 051402 (2010)

    Article  ADS  Google Scholar 

  32. Y. Jiang et al., Ultrafast extreme ultraviolet induced isomerization of acetylene cations. Phys. Rev. Lett. 105, 263002 (2010)

    Article  ADS  Google Scholar 

  33. R. Kienberger et al., Atomic transient recorder. Nature 427(6977), 817–821 (2004)

    Article  ADS  Google Scholar 

  34. R. Koopmann et al., In vivo protein crystallization opens new routes in structural biology. Nat. Methods 9(3), 259–262 (2012)

    Article  Google Scholar 

  35. M. Krikunova et al., Strong-field ionization of molecular iodine traced with XUV pulses from a free-electron laser. Phys. Rev. A 86, 043430 (2012)

    Google Scholar 

  36. M. Krikunova et al., Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses. J. Chem. Phys. 134(2), 024313 (2011)

    Article  ADS  Google Scholar 

  37. N.V. Kryzhevoi, V. Averbukh, L.S. Cederbaum, High activity of helium droplets following ionization of systems inside those droplets. Phys. Rev. B 76, 094513 (2007)

    Article  ADS  Google Scholar 

  38. M. Lewenstein et al., Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  Google Scholar 

  39. L. Lomb et al., Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Phys. Rev. B 84, 214111 (2011)

    Article  ADS  Google Scholar 

  40. A.V. Martin et al., Single particle imaging with soft x-rays at the Linac coherent light source. Proc. SPIE 8078, 807809-9 (2011)

    Google Scholar 

  41. H. Mashiko, A. Suda, K. Midorikawa, Focusing multiple high-order harmonics in the extreme-ultraviolet and soft-x-ray regions by a platinum-coated ellipsoidal mirror. Appl. Opt. 45(3), 573–577 (2006)

    Article  ADS  Google Scholar 

  42. R. Moshammer et al., Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He. Opt. Express 19(22), 21698–21706 (2011)

    Article  ADS  Google Scholar 

  43. R. Neutze et al., Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797), 752–757 (2000)

    Article  ADS  Google Scholar 

  44. G. Öhrwall et al., Femtosecond interatomic Coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 93, 173401 (2004)

    Google Scholar 

  45. G. Öhrwall et al., Charge dependence of solvent-mediated intermolecular Coster- Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114(51), 17057–17061 (2010)

    Google Scholar 

  46. T. Ouchi et al., Interatomic Coulombic decay following Ne 1s Auger decay in NeA. Phys. Rev. A 83, 053415 (2011)

    Article  ADS  Google Scholar 

  47. B.D. Patterson et al., Coherent science at the SwissFEL x-ray lase. New J. Phys. 12(3), 035012 (2010)

    Article  ADS  Google Scholar 

  48. P.M. Paul et al., Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001)

    Article  ADS  Google Scholar 

  49. M. Richter et al., Extreme ultraviolet laser excites atomic giant resonance. Phys. Rev. Lett. 102, 163002 (2009)

    Article  ADS  Google Scholar 

  50. I. Robinson, G. Gruebel, S. Mochrie, Focus on X-ray beams with high coherence. New J. Phys. 12(3), 035002 (2010)

    Article  ADS  Google Scholar 

  51. N. Rohringer, R. Santra, X-ray nonlinear optical processes using a selfamplified spontaneous emission free-electron laser. Phys. Rev. A 76, 033416 (2007)

    Article  ADS  Google Scholar 

  52. B. Rudek et al., Resonance-enhanced multiple ionization of krypton at an x-ray free-electron laser. Phys. Rev. A 87, 023413 (2013)

    Article  ADS  Google Scholar 

  53. R. Santra, An efficient combination of computational techniques for investigating electronic resonance states in molecules. J. Chem. Phys. 115, 6853 (2001)

    Article  ADS  Google Scholar 

  54. R. Santra et al., Interatomic Coulombic decay in van der Waals clusters and impact of nuclear motion. Phys. Rev. Lett. 85, 4490 (2000)

    Article  ADS  Google Scholar 

  55. R. Santra et al., Intermolecular coulombic decay of clusters. J. Electron Spectrosc. Relat. Phenom. 114–116 (2001). In: Proceeding of the Eight International Conference on Electronic Spectroscopy and Structure, pp. 41–47

    Google Scholar 

  56. R. Santra, L.S. Cederbaum, Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 368(1), 1–117 (2002)

    Article  ADS  Google Scholar 

  57. S. Scheit et al., On the interatomic Coulombic decay in the Ne dimer. J. Chem. Phys. 121, 8393 (2004)

    Article  ADS  Google Scholar 

  58. K. Schnorr et al., Time-Resolved measurement of interatomic Coulombic decay in \({\rm {Ne}}_2\). Phys. Rev. Lett. 111, 093402 (2013)

    Article  ADS  Google Scholar 

  59. K. Schnorr et al., Electron rearrangement dynamics in dissociating \({\rm {I}}^{{\rm {n}}+}_{2}\) molecules accessed by extreme ultraviolet pump-probe experiments. Phys. Rev. Lett. 113, 073001 (2014)

    Article  ADS  Google Scholar 

  60. K. Schnorr et al., Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments. Faraday Discuss. 171 (2014)

    Google Scholar 

  61. M. Schultze et al., Delay in photoemission. Science 328(5986), 1658–1662 (2010)

    Article  ADS  Google Scholar 

  62. M.M. Seibert et al., Single mimivirus particles intercepted and imaged with an x-ray laser. Nature 470(7332), 78–81 (2011)

    Article  ADS  Google Scholar 

  63. T. Shintake et al., A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nat. Photonics 2(9), 555–559 (2008)

    Article  Google Scholar 

  64. J. Ullrich et al., Recoil-ion and electron momentum spectroscopy: reactionmicroscopes. Rep. Prog. Phys. 66(9), 1463 (2003)

    Article  ADS  Google Scholar 

  65. Z. Vager, R. Naaman, E.P. Kanter, Coulomb explosion imaging of small molecules. Science 244(4903), 426–431 (1989)

    Article  ADS  Google Scholar 

  66. J.A. Valdmanis, R.L. Fork, J.P. Gordon, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt. Lett. 10(3), 131–133 (1985)

    Article  ADS  Google Scholar 

  67. N. Vaval, L.S. Cederbaum, Ab initio lifetimes in the interatomic Coulombic decay of neon clusters computed with propagators. J. Chem. Phys. 126, 164110 (2007)

    Article  ADS  Google Scholar 

  68. H. Wabnitz et al., Multiple ionization of atom clusters by intense soft x-rays from a free-electron laser. Nature 420(6915), 482–485 (2002)

    Article  ADS  Google Scholar 

  69. J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1\(\le \) Z \(\le \) 103. At. Data Nucl. Data Tables 32(1), 1–155 (1985)

    Article  ADS  Google Scholar 

  70. L. Young et al., Femtosecond electronic response of atoms to ultra-intense x-rays. Nature 466(7302), 56–61 (2010)

    Article  ADS  Google Scholar 

  71. A.H. Zewail, Laser femtochemistry. Science 242(4886), 1645–1653 (1988)

    Article  ADS  Google Scholar 

  72. A.H. Zewail, Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture). Angew. Chem. Int. Ed. 39(15), 2586–2631 (2000)

    Article  Google Scholar 

  73. K. Zhao et al., Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37(18), 3891–3893 (2012)

    Article  ADS  Google Scholar 

  74. J. Zobeley, R. Santra, L.S. Cederbaum, Electronic decay in weakly bound heteroclusters: energy transfer versus electron transfer. J. Chem. Phys. 115(11), 5076–5088 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Schnorr .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schnorr, K. (2015). Introduction. In: XUV Pump-Probe Experiments on Diatomic Molecules. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12139-0_1

Download citation

Publish with us

Policies and ethics