Skip to main content

Nanomedicine—Nanoparticles in Cancer Imaging and Therapy

  • Chapter
  • First Online:
Genomic Instability and Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 20))

Abstract

Nanomedicine refers to the application of nanotechnology in medicine, and endeavors to diagnose, treat, and/or monitor disease on a nanoscale. Cancer nanotechnology is a quickly evolving field of interdisciplinary research that involves the biomedical application of nanoparticles, which are nanoscale devices that are able to overcome biological barriers, specifically recognize a single type of cancer cell, and accumulate preferentially in tumors. Medical applications with nanoparticles are growing, as they have the potential to offer novel methods of noninvasive cancer detection, diagnosis, and treatment. Tumor targeting ligands, such as antibodies, peptides, or small molecules, can be attached to nanoparticles for targeting of tumor antigens and vasculatures with high affinity and specificity. In addition, diagnostic agents (i.e. optical, radiolabels, or magnetic) and chemotherapeutic drugs can be integrated into their design for more efficient imaging and treatment of the tumor with fewer side effects. Recent advances in nanomedicine raise exciting possibilities for future nanoparticle applications in personalized cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CEST:

Chemical exchange saturation transfer

DOTA:

1,4,7,10-tetraazacyclodocecane-N, N’N’’, N’’’-tetraacetic acid

DOX:

Doxorubicin

EPR:

Enhanced permeability and retention

GRP:

Gastrin releasing peptide

HSA:

Human serum albumin

ID/g:

Injected dose per gram

MRI:

Magnetic resonance imaging

MTX:

Methotrexate

NIRF:

Near infrared fluorescence

NPs:

Nanoparticles

P-gp:

P-glycoprotein

PEG:

Polyethylene glycol

PET:

Positron emission tomography

PLGA:

D, L-lactide co-glycolide

PTX:

Paclitaxel

RES:

Reticuloendothelial system

RGD:

Arginine-glycine-aspartic acid

SPECT:

Single photon emission computed tomography

VAP:

Vapreotide

VEGF/R:

Vascular endothelial growth factor/receptor

AuNP:

Gold NP

CLIO:

Cross-linked Iron Oxide NPs

CNT:

Carbon nanotube

CPMV:

Cowpea mosaic virus

IONPs:

Iron oxide NPs

MnMEIO:

Manganese-doped magnetism-engineered iron oxide

PAMAM dendrimer:

Poly(amidoamine) dendrimer

QD:

Quantum Dot

SPIO:

Superparamagnetic iron oxide NPs

SWNT:

Single-walled carbon nanotube

VNP:

Viral Nanoparticle

References

  1. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    CAS  PubMed  Google Scholar 

  2. Srinivas PR, Barker P, Srivastava S (2002) Nanotechnology in early detection of cancer. Lab Invest 82(5):657–662

    PubMed  Google Scholar 

  3. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    CAS  PubMed  Google Scholar 

  4. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    CAS  PubMed  Google Scholar 

  5. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    CAS  PubMed  Google Scholar 

  6. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    CAS  PubMed  Google Scholar 

  8. Li Z-B, Cai W, Chen X (2007) Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 7(8):2567–2581

    CAS  PubMed  Google Scholar 

  9. Cai W, Hsu AR, Li Z-B, Chen X (2007) Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2(6):265–281

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Caminade A-M, Laurent R, Majoral J-P (2005) Characterization of dendrimers. Adv Drug Deliv Rev 57(15):2130–2146

    CAS  PubMed  Google Scholar 

  11. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29(2):138–175

    Google Scholar 

  12. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340

    CAS  PubMed  Google Scholar 

  13. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    CAS  PubMed  Google Scholar 

  14. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Tod 8(24):1112–1120

    CAS  Google Scholar 

  15. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    CAS  PubMed  Google Scholar 

  16. Peng X-H, Qian X, Mao H, Wang AY (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311

    CAS  Google Scholar 

  17. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365

    CAS  PubMed  Google Scholar 

  18. Schwertmann U, Cornell RM (2008) Iron oxides in the laboratory: preparation and characterization. Wiley, Hoboken

    Google Scholar 

  19. Babincova M, Babinec P, Bergemann C (2000) High-gradient magnetic capture of ferrofluids: implications for drug targeting and tumor embolization. Z Naturforschung C, J Biosci 56(9–10):909–911

    Google Scholar 

  20. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    CAS  PubMed  Google Scholar 

  21. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253. doi:10.1259/bjr/13169882

    CAS  PubMed  Google Scholar 

  22. Skirtach AG, Muñoz Javier A, Kreft O, Köhler K, Piera Alberola A, Möhwald H, Parak WJ, Sukhorukov GB (2006) Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed Engl 45(28):4612–4617

    CAS  PubMed  Google Scholar 

  23. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282

    CAS  PubMed  Google Scholar 

  24. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 7(5):571–577

    Google Scholar 

  25. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    CAS  PubMed  Google Scholar 

  26. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166

    CAS  PubMed  Google Scholar 

  27. Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    CAS  PubMed  Google Scholar 

  28. Rosenthal E, Poizot-Martin I, Saint-Marc T, Spano J-P, Cacoub P, Group DS (2002) Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol 25(1):57–59

    PubMed  Google Scholar 

  29. Rivera E (2003) Current status of liposomal anthracycline therapy in metastatic breast cancer. Clin Breast Cancer 4:S76–83

    CAS  PubMed  Google Scholar 

  30. Markman M (2006) Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 7(11):1469–1474. doi:10.1517/14656566.7.11.1469

    CAS  PubMed  Google Scholar 

  31. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    CAS  PubMed  Google Scholar 

  32. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10(8):767–776

    CAS  PubMed  Google Scholar 

  33. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O'Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    CAS  PubMed  Google Scholar 

  34. Sabbatini P, Aghajanian C, Dizon D, Anderson S, Dupont J, Brown JV, Peters WA, Jacobs A, Mehdi A, Rivkin S (2004) Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. J Clin Oncol 22(22):4523–4531

    CAS  PubMed  Google Scholar 

  35. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 5(1):83–94

    CAS  PubMed  Google Scholar 

  36. Schleich N, Sibret P, Danhier P, Ucakar B, Laurent S, Muller R, Jérôme C, Gallez B, Préat V, Danhier F (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447(1):94–101

    CAS  PubMed  Google Scholar 

  37. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl 44(39):6358–6362

    CAS  PubMed  Google Scholar 

  38. Pastorin G, Wu W, Wieckowski S, Briand J-P, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 21(11):1182–1184

    Google Scholar 

  39. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65(5):703–718

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62(2):90–99

    CAS  PubMed  Google Scholar 

  41. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Obata Y, Tajima S, Takeoka S (2010) Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 142(2):267–276

    CAS  PubMed  Google Scholar 

  43. Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S (2011) Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 7(12):1683–1689

    CAS  PubMed  Google Scholar 

  44. Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 64:102–115

    Google Scholar 

  45. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4):715–728

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Allen C, Dos Santos N, Gallagher R, Chiu G, Shu Y, Li W, Johnstone S, Janoff A, Mayer L, Webb M (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly (ethylene glycol). Biosci Rep 22:225–250

    CAS  PubMed  Google Scholar 

  47. Woodle MC (1995) Sterically stabilized liposome therapeutics. Adv Drug Deliv Rev 16(2):249–265

    CAS  Google Scholar 

  48. Beroström K, Österberg E, Holmberg K, Hoffman AS, Schuman TP, Kozlowski A, Harris JM (1995) Effects of branching and molecular weight of surface-bound poly (ethylene oxide) on protein rejection. J Biomater Sci Polym Ed 6(2):123–132

    Google Scholar 

  49. Hoarau D, Delmas P, Roux E, Leroux J-C (2004) Novel long-circulating lipid nanocapsules. Pharm Res 21(10):1783–1789

    CAS  PubMed  Google Scholar 

  50. Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34(11):970–994

    CAS  PubMed  Google Scholar 

  51. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    CAS  PubMed  Google Scholar 

  52. Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557

    CAS  PubMed  Google Scholar 

  53. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    CAS  Google Scholar 

  54. Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Mei BC, Susumu K, Medintz IL, Mattoussi H (2009) Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc 4(3):412–423

    CAS  PubMed  Google Scholar 

  56. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA Jr, Trubetskoy VS, Herron JN, Gentry CA (1994) Poly (ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochimi Biophys Acta 1195(1):11–20

    CAS  Google Scholar 

  57. Simões S, Slepushkin V, Gaspar R, de Lima M, Duzgunes N (1999) Successful transfection of lymphocytes by ternary lipoplexes. Biosci Rep 19:601–609

    PubMed  Google Scholar 

  58. Woodle MC (1998) Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev 32(1):139–152

    CAS  PubMed  Google Scholar 

  59. Vonarbourg A, Passirani C, Saulnier P, Benoit J-P (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373

    CAS  PubMed  Google Scholar 

  60. Jeon S, Lee J, Andrade J, De Gennes P (1991) Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142(1):149–158

    CAS  Google Scholar 

  61. Szleifer I (1997) Polymers and proteins: interactions at interfaces. Curr Opin Solid State Mater Sci 2(3):337–344

    CAS  Google Scholar 

  62. Gbadamosi J, Hunter A, Moghimi S (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett 532(3):338–344

    CAS  PubMed  Google Scholar 

  63. Yan X, Scherphof GL, Kamps JA (2005) Liposome opsonization. J Liposome Res 15(1-2):109–139

    CAS  PubMed  Google Scholar 

  64. De Gennes P (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27(3):189–209

    CAS  Google Scholar 

  65. Sawant RR, Sawant RM, Kale AA, Torchilin VP (2008) The architecture of ligand attachment to nanocarriers controls their specific interaction with target cells. J Drug Target 16(7–8):596–600

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci U S A 105(7):2586–2591

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219(2):316–333

    CAS  PubMed  Google Scholar 

  68. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64

    CAS  PubMed  Google Scholar 

  69. Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    CAS  PubMed  Google Scholar 

  70. Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99(20):12617–12621

    PubMed Central  PubMed  Google Scholar 

  71. Cai W, Chen X (2006) Anti-Angiogenic Cancer Therapy Based on Integrin v3 Antagonism. Anticancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 6(5):407–428

    CAS  PubMed  Google Scholar 

  72. Yu X, Chen L, Li K, Li Y, Xiao S, Luo X, Liu J, Zhou L, Deng Y, Pang D, Wang Q (2007) Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 12(1):014008. doi:10.1117/1.2437744

    PubMed  Google Scholar 

  73. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144

    CAS  PubMed  Google Scholar 

  74. Ferro-Flores G, de M RF, Melendez-Alafort L, Santos-Cuevas C (2010) Peptides for in vivo target-specific cancer imaging. Mini Rev Med Chem 10(1):87–97

    CAS  PubMed  Google Scholar 

  75. Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48(4):661–673

    PubMed  Google Scholar 

  76. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854

    CAS  PubMed  Google Scholar 

  77. Morales-Avila E, Ferro-Flores G, Ocampo-García BE, de María Ramírez F (2012) Radiolabeled nanoparticles for molecular imaging. In: Schaller B (ed) Molecular imaging, ISBN: 978-953-51-0359-2, InTech, doi: 10.5772/31109. Available from: http://www.intechopen.com/books/molecular-imaging/radiolabeled-nanoparticles-for-molecular-imaging

    Google Scholar 

  78. Cai W, Chen K, Li Z-B, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870

    CAS  PubMed  Google Scholar 

  79. Chen K, Li Z-B, Wang H, Cai W, Chen X (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35(12):2235–2244

    CAS  PubMed  Google Scholar 

  80. Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49(8):1371–1379

    CAS  PubMed  Google Scholar 

  81. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ (2011) cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    CAS  PubMed  Google Scholar 

  83. Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjugate Chem 20(2):397–401

    CAS  Google Scholar 

  84. Jarrett BR, Frendo M, Vogan J, Louie AY (2007) Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 18(3):035603

    PubMed  Google Scholar 

  85. Zhu J, Chin J, Wängler C, Wängler B, Lennox RB, Schirrmacher R (2014) Rapid 18F-labeling and loading of pegylated gold nanoparticles for in vivo applications. Bioconjugate Chem 25(6):1143–1150. doi:10.1021/bc5001593

    CAS  Google Scholar 

  86. Liu S (2009) Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjugate Chem 20(12):2199–2213

    CAS  Google Scholar 

  87. Morales-Avila E, Ferro-Flores G, Ocampo-García BE, De León-Rodríguez LM, Santos-Cuevas CL, García-Becerra R, Medina LA, Gómez-Oliván L (2011) Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c [RGDfK (C)] for molecular imaging of tumor α (v) β (3) expression. Bioconjugate Chem 22(5):913–922

    CAS  Google Scholar 

  88. Ferro-Flores G, de Murphy CA, Rodrguez-Cortes J, Pedraza-Lopez M, Ramrez-Iglesias MT (2006) Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun 27(4):371–376

    CAS  PubMed  Google Scholar 

  89. Santos-Cuevas CL, Ferro-Flores G, de Murphy CA, Pichardo-Romero PA (2008) Targeted imaging of gastrin-releasing peptide receptors with 99mTc-EDDA/HYNIC-[Lys3]-bombesin: biokinetics and dosimetry in women. Nucl Med Commun 29(8):741–747

    CAS  PubMed  Google Scholar 

  90. Mendoza-Sánchez AN, Ferro-Flores G, Ocampo-García BE, Morales-Avila E, Ramírez FdM, De León-Rodríguez LM, Santos-Cuevas CL, Medina LA, Rojas-Calderón EL, Camacho-López MA (2010) Lys 3-Bombesin Conjugated to 99 m Tc-labelled gold nanoparticles for in vivo gastrin releasing peptide-receptor imaging. J Biomed Nanotechnol 6(4):375–384

    PubMed  Google Scholar 

  91. Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34(5):579–583

    CAS  PubMed  Google Scholar 

  92. Chan HB, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC (2004) Carbon-encapsulated radioactive 99mtc nanoparticles. Adv Mater 16(2):144–149

    CAS  Google Scholar 

  93. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362

    CAS  PubMed Central  PubMed  Google Scholar 

  94. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48(7):1180–1189

    CAS  PubMed  Google Scholar 

  95. Chrastina A, Schnitzer JE (2010) Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomedicine 5:653–659. doi:10.2147/ijn.s11677

    PubMed Central  PubMed  Google Scholar 

  96. Torres M de RR, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ (2011) 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjugate Chem 22(3):455–465

    Google Scholar 

  97. Pathak AP, Gimi B, Glunde K, Ackerstaff E, Artemov D, Bhujwalla ZM (2009) Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzyol 2004:3–60

    Google Scholar 

  98. Zhaoda Z, Nair SA, McMurry TJ (2005) Gadolinium meets medicinal chemistry: MRI contrast agent development. Curr Med Chem 12(7):751–778

    Google Scholar 

  99. Pautler RG, Fraser SE (2003) The year (s) of the contrast agent-micro-MRI in the new millennium. Curr Opin Immunol 15(4):385–392

    CAS  PubMed  Google Scholar 

  100. Thorek DL, Weisshaar CL, Czupryna JC, Winkelstein BA, Tsourkas A (2011) Superparamagnetic iron oxide-enhanced magnetic resonance imaging of neuroinflammation in a rat model of radicular pain. Mol Imaging 10(3):206–214

    PubMed  Google Scholar 

  101. Kawasaki ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1(2):101–109

    CAS  PubMed  Google Scholar 

  102. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3(1):20–31

    CAS  PubMed  Google Scholar 

  103. Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C, Holzknecht N, Saini S (2000) Hepatic lesion detection and characterization: value of nonenhanced mr imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral ct-roc analysis 1. Radiology 217(1):152–158

    CAS  PubMed  Google Scholar 

  104. Shamsi K, Balzer T, Saini S, Ros P, Nelson R, Carter E, Tollerfield S, Niendorf H (1998) Superparamagnetic iron oxide particles (SH U 555 A): evaluation of efficacy in three doses for hepatic MR imaging. Radiology 206(2):365–371

    CAS  PubMed  Google Scholar 

  105. Weissleder R, Hahn PF, Stark DD, Elizondo G, Saini S, Todd L, Wittenberg J, Ferrucci J (1988) Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. Radiology 169(2):399–403

    CAS  PubMed  Google Scholar 

  106. Weissleder R, Stark D, Rummeny E, Compton C, Ferrucci J (1988) Splenic lymphoma: ferrite-enhanced MR imaging in rats. Radiology 166(2):423–430

    CAS  PubMed  Google Scholar 

  107. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, Saini S, Maravilla KR, Feldman DE, Schmiedl UP (2003) Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase iii safety and efficacy study 1. Radiology 228(3):777–788

    PubMed  Google Scholar 

  108. Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222(1):239–244. doi:10.1148/radiol.2221010225

    PubMed  Google Scholar 

  109. Chavanpatil MD, Khdair A, Panyam J (2006) Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 6(9–10):9–10

    Google Scholar 

  110. Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9(2):228–232

    CAS  PubMed  Google Scholar 

  111. Milne M, Gobbo P, McVicar N, Bartha R, Workentin MS, Hudson RH (2013) Water-soluble gold nanoparticles (AuNP) functionalized with a gadolinium (III) chelate via Michael addition for use as a MRI contrast agent. J Mater Chem B 1(41):5628–5635

    CAS  Google Scholar 

  112. Langereis S, Keupp J, van Velthoven JL, de Roos IH, Burdinski D, Pikkemaat JA, Grüll H (2009) A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J Am Chem Soc 131(4):1380–1381

    CAS  PubMed  Google Scholar 

  113. Aime S, Castelli DD, Lawson D, Terreno E (2007) Gd-loaded liposomes as T 1, susceptibility, and CEST agents, all in one. J Am Chem Soc 129(9):2430–2431

    CAS  PubMed  Google Scholar 

  114. Castelli DD, Boffa C, Giustetto P, Terreno E, Aime S (2014) Design and testing of paramagnetic liposome-based CEST agents for MRI visualization of payload release on pH-induced and ultrasound stimulation. J Biol Inorg Chem 19(2):207–214. doi:10.1007/s00775-013-1042-0

    CAS  PubMed  Google Scholar 

  115. Cai W, Rao J, Gambhir SS, Chen X (2006) How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 5(11):2624–2633

    CAS  PubMed  Google Scholar 

  116. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10

    CAS  PubMed  Google Scholar 

  117. Cai W, Sam Gambhir S, Chen X (2005) Multimodality tumor imaging targeting integrin alphavbeta3. Biotechniques 39(6 Suppl):S14–25. doi:10.2144/000112091

    PubMed  Google Scholar 

  118. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 4(5):623–626

    CAS  PubMed  Google Scholar 

  119. Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang H, Robertson JD, Wickline SA (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel ανβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63(18):5838–5843

    CAS  PubMed  Google Scholar 

  120. Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G (2005) Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles. Magn Reson Med 53(3):621–627

    CAS  PubMed  Google Scholar 

  121. Jun Y-w, Huh Y-M, Choi J-s, Lee J-H, Song H-T, Kim S, Kim S, Yoon S, Kim K-S, Shin J-S (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733

    CAS  PubMed  Google Scholar 

  122. Lee J-H, Huh Y-M, Jun Y-w, Seo J-w, Jang J-t, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    CAS  PubMed  Google Scholar 

  123. Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31(11):3016–3022. doi:10.1016/j.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Yih T, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97(6):1184–1190

    CAS  PubMed  Google Scholar 

  125. Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    CAS  PubMed  Google Scholar 

  126. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16(10):1217–1226. doi:10.1096/fj.02-0088com

    CAS  PubMed  Google Scholar 

  127. Yang H, Li K, Liu Y, Liu Z, Miyoshi H (2009) Poly (D, L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol 9(1):282–287

    CAS  PubMed  Google Scholar 

  128. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92(7):1343–1355

    CAS  PubMed  Google Scholar 

  129. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    CAS  PubMed  Google Scholar 

  130. Batrakova E, Dorodnych TY, Klinskii EY, Kliushnenkova E, Shemchukova O, Goncharova O, Arjakov S, Alakhov VY, Kabanov A (1996) Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 74(10):1545–1552

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, Okano T, Sakurai Y, Kataoka K (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74(1):295–302

    CAS  PubMed  Google Scholar 

  132. Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo DS, Kim NK, Bang Y-J (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716

    CAS  PubMed  Google Scholar 

  133. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430

    CAS  PubMed  Google Scholar 

  134. Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JM, Szoka FC (2002) Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chem 13(3):453–461

    Google Scholar 

  135. O’brien M, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback D, Tomczak P, Ackland S (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449

    Google Scholar 

  136. Lasic DD, Martin FJ (1995) Stealth liposomes, vol 20. CRC, Boca Raton

    Google Scholar 

  137. Hofheinz R-D, Gnad-Vogt SU, Beyer U, Hochhaus A (2005) Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16(7):691–707

    CAS  PubMed  Google Scholar 

  138. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Li J, Wang X, Wang C, Chen B, Dai Y, Zhang R, Song M, Lv G, Fu D (2007) The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. ChemMedChem 2(3):374–378

    CAS  PubMed  Google Scholar 

  140. Nobuto H, Sugita T, Kubo T, Shimose S, Yasunaga Y, Murakami T, Ochi M (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109(4):627–635

    CAS  PubMed  Google Scholar 

  141. Park J-H, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 47(38):7284–7288. doi:10.1002/anie.200801810

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 47(44):8438–8441

    CAS  PubMed  Google Scholar 

  143. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377

    CAS  PubMed  Google Scholar 

  144. Furlani EP, Ng KC (2008) Nanoscale magnetic biotransport with application to magnetofection. Phys Rev E Stat Nonlin Soft Matter Phys 77(6):061914

    CAS  PubMed  Google Scholar 

  145. Yellen BB, Forbes ZG, Halverson DS, Fridman G, Barbee KA, Chorny M, Levy R, Friedman G (2005) Targeted drug delivery to magnetic implants for therapeutic applications. J Magn Magn Mater 293(1):647–654

    CAS  Google Scholar 

  146. Shapiro B (2009) Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J Magn Magn Mater 321(10):1594–1599

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Biol Med 158(2):141–146

    CAS  Google Scholar 

  148. Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE (1983) Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 19(1):135–139

    CAS  PubMed  Google Scholar 

  149. Rudge S, Peterson C, Vessely C, Koda J, Stevens S, Catterall L (2001) Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release 74(1):335–340

    CAS  PubMed  Google Scholar 

  150. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29(29):4012–4021

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61(7):3027–3032

    CAS  PubMed  Google Scholar 

  152. Hu SH, Chen SY, Liu DM, Hsiao CS (2008) Core/Single-Crystal-Shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv Mater 20(14):2690–2695

    CAS  PubMed  Google Scholar 

  153. Thomas CR, Ferris DP, Lee J-H, Choi E, Cho MH, Kim ES, Stoddart JF, Shin J-S, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132(31):10623–10625

    CAS  PubMed  Google Scholar 

  154. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48

    CAS  Google Scholar 

  155. Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh P (2000) Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm 202(1):1–10

    CAS  PubMed  Google Scholar 

  156. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  157. Jain R (2001) Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 74(1):7–25

    CAS  PubMed  Google Scholar 

  158. Jain RK (1999) Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res 5(7):1605–1606

    CAS  PubMed  Google Scholar 

  159. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360

    CAS  PubMed  Google Scholar 

  160. Smith BR, Kempen P, Bouley D, Xu A, Liu Z, Melosh N, Dai H, Sinclair R, Gambhir SS (2012) Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett 12(7):3369–3377

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Chen F, Cai W (2014) Tumor vasculature targeting: a generally applicable approach for functionalized nanomaterials. Small 10(10):1887–1893. doi:10.1002/smll.201303627

    CAS  PubMed  Google Scholar 

  162. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7(6):606–618

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740

    CAS  PubMed  Google Scholar 

  164. Feng Q, Yu M-Z, Wang J-C, Hou W-J, Gao L-Y, Ma X-F, Pei X-W, Niu Y-J, Liu X-Y, Qiu C (2014) Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials 35(18):5028–5038

    CAS  PubMed  Google Scholar 

  165. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803

    CAS  PubMed  Google Scholar 

  166. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    CAS  PubMed  Google Scholar 

  167. Jiang X, Xin H, Gu J, Xu X, Xia W, Chen S, Xie Y, Chen L, Chen Y, Sha X (2013) Solid tumor penetration by integrin-mediated pegylated poly (trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials 34(6):1739–1746

    CAS  PubMed  Google Scholar 

  168. Li C (2002) Poly (L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev 54(5):695–713

    CAS  PubMed  Google Scholar 

  169. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11(4):265–283

    CAS  PubMed  Google Scholar 

  170. Brown R, Links M (1999) Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1(15):1–21

    Google Scholar 

  171. Calcabrini A, Meschini S, Stringaro A, Cianfriglia M, Arancia G, Molinari A (2000) Detection of P-glycoprotein in the nuclear envelope of multidrug resistant cells. Histochem J 32(10):599–606

    CAS  PubMed  Google Scholar 

  172. Vasir JK, Labhasetwar V (2005) Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 4(4):363–374

    CAS  PubMed  Google Scholar 

  173. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY (2006) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 317(3):1372–1381

    CAS  PubMed  Google Scholar 

  174. Emilienne Soma C, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21(1):1–7

    Google Scholar 

  175. Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharmaceutics 2(5):373–383

    CAS  Google Scholar 

  176. Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103(2):405–418

    CAS  PubMed  Google Scholar 

  177. Arias JL, Reddy LH, Othman M, Gillet B, Desmaele D, Zouhiri F, Dosio F, Gref R, Couvreur P (2011) Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 5(2):1513–1521

    CAS  PubMed  Google Scholar 

  178. Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24(2):62–67

    CAS  PubMed  Google Scholar 

  179. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572

    CAS  PubMed  Google Scholar 

  180. Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30(20):3466–3475

    CAS  PubMed  Google Scholar 

  181. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OC (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Aryal S, Hu C-MJ, Zhang L (2011) Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharmaceutics 8(4):1401–1407

    CAS  Google Scholar 

  183. Liao L, Liu J, Dreaden EC, Morton SW, Shopsowitz KE, Hammond PT, Johnson JA (2014) A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc 136 (16):5896–5899. doi:10.1021/ja502011 g

    CAS  PubMed  Google Scholar 

  184. DeVita VT, Serpick AA, Carbone PP (1970) Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med 73(6):881–895

    PubMed  Google Scholar 

  185. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30(7):679–692

    CAS  PubMed  Google Scholar 

  186. Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6(5):634–641

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 7(12):1664–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3):354–360

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn M, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120(1):41–50

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Wang Q, Kaltgrad E, Lin T, Johnson JE, Finn M (2002) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9(7):805–811

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard G. Luyt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hauser-Kawaguchi, A., Luyt, L. (2015). Nanomedicine—Nanoparticles in Cancer Imaging and Therapy. In: Maxwell, C., Roskelley, C. (eds) Genomic Instability and Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-12136-9_10

Download citation

Publish with us

Policies and ethics