Prolactin-Induced Protein in Breast Cancer

  • Ali NaderiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 846)


Prolactin-induced protein (PIP) is a 17-kDa single polypeptide chain that is secreted by a number of normal apocrine cells, such as milk, saliva, and seminal fluid. PIP is widely expressed in breast cancer and is commonly used as a diagnostic biomarker for the histopathological diagnosis of this disease. Expression of PIP in breast cancer is regulated by androgen and prolactin through a number of transcription factors and signaling cross-talks, including STAT5, Runx2, and CREB1. Notably, PIP is induced by a positive feedback loop between androgen receptor (AR) and extracellular signal-regulated kinase (ERK). The available data indicate that PIP has an aspartyl protease activity that can degrade fibronectin. Importantly, PIP is necessary for outside-in activation of integrin-β1 signaling pathway and regulation of key downstream signaling targets of this pathway such as interaction of integrin-β1 with integrin-linked kinase 1 (ILK1) and ErbB2. Furthermore, the importance of PIP in cell proliferation has been demonstrated by the fact that purified PIP promotes growth of breast cancer cells and PIP expression is necessary for the proliferation of T-47D and MDA-MB-453 cell lines. In addition to cell proliferation, PIP mediates invasion of breast cancer cells in a process that partially depends on the degradation of fibronectin by this protein. Therefore, PIP is a breast cancer-related protein that is expressed in a majority of breast tumors and has a significant function in the biology of this disease.


Prolactin-induced protein PIP Breast cancer Integrin Androgen receptor 


Competing Interests

Author has no competing interests to disclose.


  1. 1.
    Autiero M, Cammarota G, Friedlein A, Zulauf M, Chiappetta G, Dragone V, Guardiola J (1995) A 17-kDa CD4-binding glycoprotein present in human seminal plasma and in breast tumor cells. Eur J Immunol 25(5):1461–1464. doi:10.1002/eji.1830250550CrossRefPubMedGoogle Scholar
  2. 2.
    Baniwal SK, Little GH, Chimge NO, Frenkel B (2012) Runx2 controls a feed-forward loop between androgen and prolactin-induced protein (PIP) in stimulating T47D cell proliferation. J Cell Physiol 227(5):2276–2282. doi:10.1002/jcp.22966CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Baniwal SK, Chimge NO, Jordan VC, Tripathy D, Frenkel B (2013) Prolactin-induced protein (PIP) regulates proliferation of luminal A type breast cancer cells in an estrogen-independent manner. PLoS ONE 8(6):e62361. doi:10.1371/journal.pone.0062361CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Bergamo P, Balestrieri M, Cammarota G, Guardiola J, Abrescia P (1997) CD4-mediated anchoring of the seminal antigen gp17 onto the spermatozoon surface. Human Immunol 58(1):30–41CrossRefGoogle Scholar
  5. 5.
    Berry MG, Goode AW, Puddefoot JR, Vinson GP, Carpenter R (2003) Integrin beta1-mediated invasion of human breast cancer cells: an ex vivo assay for invasiveness. Breast Cancer 10(3):214–219CrossRefPubMedGoogle Scholar
  6. 6.
    Blais Y, Sugimoto K, Carriere MC, Haagensen DE, Labrie F, Simard J (1994) Potent stimulatory effect of interleukin-1 alpha on apolipoprotein D and gross cystic disease fluid protein-15 expression in human breast-cancer cells. Int J Cancer 59(3):400–407CrossRefPubMedGoogle Scholar
  7. 7.
    Blais Y, Gingras S, Haagensen DE, Labrie F, Simard J (1996) Interleukin-4 and interleukin-13 inhibit estrogen-induced breast cancer cell proliferation and stimulate GCDFP-15 expression in human breast cancer cells. Mol Cell Endocrinol 121(1):11–18CrossRefPubMedGoogle Scholar
  8. 8.
    Caputo E, Manco G, Mandrich L, Guardiola J (2000) A novel aspartyl proteinase from apocrine epithelia and breast tumors. J Biol Chem 275(11):7935–7941CrossRefPubMedGoogle Scholar
  9. 9.
    Carsol JL, Gingras S, Simard J (2002) Synergistic action of prolactin (PRL) and androgen on PRL-inducible protein gene expression in human breast cancer cells: a unique model for functional cooperation between signal transducer and activator of transcription-5 and androgen receptor. Mol Endocrinol 16(7):1696–1710CrossRefPubMedGoogle Scholar
  10. 10.
    Cassoni P, Sapino A, Haagensen DE, Naldoni C, Bussolati G (1995) Mitogenic effect of the 15-kDa gross cystic disease fluid protein (GCDFP-15) on breast-cancer cell lines and on immortal mammary cells. Int J Cancer 60(2):216–220CrossRefPubMedGoogle Scholar
  11. 11.
    Chen JY, Lin JR, Cimprich KA, Meyer T (2012) A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision. Mol Cell 45(2):196–209. doi:10.1016/j.molcel.2011.11.023CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chia KM, Liu J, Francis GD, Naderi A (2011) A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia 13(2):154–166PubMedCentralPubMedGoogle Scholar
  13. 13.
    Clark JW, Snell L, Shiu RP, Orr FW, Maitre N, Vary CP, Cole DJ, Watson PH (1999) The potential role for prolactin-inducible protein (PIP) as a marker of human breast cancer micrometastasis. Br J Cancer 81(6):1002–1008. doi:10.1038/sj.bjc.6690799CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Dilley WG, Haagensen DE Jr, Leight GS Jr, Ammirata S, Davis SR, Silva JS, Zamcheck N, Lokich JJ, Wells SA Jr (1986) Fluoxymesterone stimulation of tumor marker secretion in patients with breast carcinoma. Breast Cancer Res Treat 8(3):205–215CrossRefPubMedGoogle Scholar
  15. 15.
    Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, Gerald WL (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25(28):3994–4008CrossRefPubMedGoogle Scholar
  16. 16.
    Falcioni R, Antonini A, Nistico P, Di Stefano S, Crescenzi M, Natali PG, Sacchi A (1997) Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 236(1):76–85CrossRefPubMedGoogle Scholar
  17. 17.
    Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Ficke M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671CrossRefPubMedGoogle Scholar
  18. 18.
    Forsyth CB, Pulai J, Loeser RF (2002) Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 46(9):2368–2376. doi:10.1002/art.10502CrossRefPubMedGoogle Scholar
  19. 19.
    Gaubin M, Autiero M, Basmaciogullari S, Metivier D, Mis hal Z, Culerrier R, Oudin A, Guardiola J, Piatier-Tonneau D (1999) Potent inhibition of CD4/TCR-mediated T cell apoptosis by a CD4-binding glycoprotein secreted from breast tumor and seminal vesicle cells. J Immunol 162(5):2631–2638PubMedGoogle Scholar
  20. 20.
    Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, MacGrogan G, Lerebours F, Finetti P, Longy M, Bertheau P, Bertrand F, Bonnet F, Martin AL, Feugeas JP, Bieche I, Lehmann-Che J, Lidereau R, Birnbaum D, Bertucci F, de The H, Theillet C (2012) A refined molecular taxonomy of breast cancer. Oncogene 31(9):1196–1206. doi:10.1038/onc.2011.301CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Haagensen DE Jr, Mazoujian G, Dilley WG, Pedersen CE, Kister SJ, Wells SA Jr (1979) Breast gross cystic disease fluid analysis. I. Isolation and radioimmunoassay for a major component protein. J Natl Cancer Inst 62(2):239–247PubMedGoogle Scholar
  22. 22.
    Haagensen DE Jr, Gall SA, Brazy JE, Giannola J, Wells SA Jr (1980) Analysis of amniotic fluid, maternal plasma, and cord blood for a human breast gross cystic disease fluid protein. Am J Obstet Gynecol 138(1):25–32PubMedGoogle Scholar
  23. 23.
    Hahnel R, Hahnel E (1996) Expression of the PIP/GCDFP-15 gene and survival in breast cancer. Virchows Arch 429(6):365–369CrossRefPubMedGoogle Scholar
  24. 24.
    Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F (2009) Prolactin inducible protein in cancer, fertility and immunoregulation: structure, function and its clinical implications. Cell Mol Life Sci 66(3):447–459CrossRefPubMedGoogle Scholar
  25. 25.
    Hocking DC, Sottile J, McKeown-Longo PJ (1998) Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin’s cell adhesion and matrix assembly domains. J Cell Biol 141(1):241–253CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Kuwada SK, Li X (2000) Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol Biol Cell 11(7):2485–2496CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Legate KR, Montanez E, Kudlacek O, Fassler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7(1):20–31. doi:10.1038/nrm1789CrossRefPubMedGoogle Scholar
  28. 28.
    Lehmann-Che J, Hamy AS, Porcher R, Barritault M, Bouhidel F, Habuellelah H, Leman-Detours S, de Roquancourt A, Cahen-Doidy L, Bourstyn E, de Cremoux P, de Bazelaire C, Albiter M, Giacchetti S, Cuvier C, Janin A, Espie M, de The H, Bertheau P (2013) Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res 15(3):R37. doi:10.1186/bcr3421CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623CrossRefPubMedGoogle Scholar
  30. 30.
    Manni A, Santen RJ, Boucher AE, Lipton A, Harvey H, Drago J, Rohner T, Haagensen D, Glode M, Santner SJ (1984) Evaluation of CEA and GCDFP-15 plasma level during hormonally induced cancer stimulation. Anticancer Res 4(3):141–144PubMedGoogle Scholar
  31. 31.
    Mirels L, Hand AR, Branin HJ (1998) Expression of gross cystic disease fluid protein-15/Prolactin-inducible protein in rat salivary glands. J Histochem Cytochem 46(9):1061–1071CrossRefPubMedGoogle Scholar
  32. 32.
    Murphy LC, Tsuyuki D, Myal Y, Shiu RP (1987) Isolation and sequencing of a cDNA clone for a prolactin-inducible protein (PIP). Regulation of PIP gene expression in the human breast cancer cell line, T-47D. J Biol Chem 262(31):15236–15241PubMedGoogle Scholar
  33. 33.
    Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RP (1991) The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol 80(1–3):165–175CrossRefPubMedGoogle Scholar
  34. 34.
    Naderi A, Hughes-Davies L (2008) A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia 10(6):542–548PubMedCentralPubMedGoogle Scholar
  35. 35.
    Naderi A, Meyer M (2012) Prolactin-induced protein mediates cell invasion and regulates integrin signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 14(4):R111. doi:10.1186/bcr3232CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Owen JD, Ruest PJ, Fry DW, Hanks SK (1999) Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol 19(7):4806–4818PubMedCentralPubMedGoogle Scholar
  37. 37.
    Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS (2010) Expression of androgen receptors in primary breast cancer. Ann Oncol 21(3):488–492. doi:10.1093/annonc/mdp510CrossRefPubMedGoogle Scholar
  38. 38.
    Pasquinelli R, Barba P, Capasso I, D’Aiuto M, D’Aiuto G, Anzisi AM, De Berardinis P, Guardiola J (1999) Circulating antibodies against the breast tumor marker GCDFP-15/gp17 in mammary carcinoma patients and in patients carrying benign breast conditions. Int J Cancer 84(6):568–572CrossRefPubMedGoogle Scholar
  39. 39.
    Schenkels LC, Walgreen-Weterings E, Oomen LC, Bolscher JG, Veerman EC, Nieuw Amerongen AV (1997) In vivo binding of the salivary glycoprotein EP-GP (identical to GCDFP-15) to oral and non-oral bacteria detection and identification of EP-GP binding species. Biol Chem 378(2):83–88CrossRefPubMedGoogle Scholar
  40. 40.
    Shigemura K, Isotani S, Wang R, Fujisawa M, Gotoh A, Marshall FF, Zhau HE, Chung LW (2009) Soluble factors derived from stroma activated androgen receptor phosphorylation in human prostate LNCaP cells: roles of ERK/MAP kinase. Prostate 69(9):949–955CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67(2):684–694. doi:10.1158/0008-5472.CAN-06-3166CrossRefPubMedGoogle Scholar
  42. 42.
    Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C (2006) PACK: profile analysis using clustering and kurtosis to find molecular classifiers in cancer. Bioinformatics 15(22):2269–2275CrossRefGoogle Scholar
  43. 43.
    Wilson SH, Ljubimov AV, Morla AO, Caballero S, Shaw LC, Spoerri PE, Tarnuzzer RW, Grant MB (2003) Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through alpha5beta1 integrin and PI 3-kinase. Invest Ophthalmol Vis Sci 44(4):1704–1715CrossRefPubMedGoogle Scholar
  44. 44.
    Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155(4):505–510. doi:10.1083/jcb.200108077CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Yu X, Miyamoto S, Mekada E (2000) Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J Cell Sci 113(Pt 12):2139–2147PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Holden Comprehensive Cancer CenterUniversity of IowaIowa CityUSA

Personalised recommendations