Advertisement

Tyrosyl Phosphorylated Serine-Threonine Kinase PAK1 is a Novel Regulator of Prolactin-Dependent Breast Cancer Cell Motility and Invasion

  • Alan Hammer
  • Maria DiakonovaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 846)

Abstract

Despite efforts to discover the cellular pathways regulating breast cancer metastasis, little is known as to how prolactin (PRL) cooperates with extracellular environment and cytoskeletal proteins to regulate breast cancer cell motility and invasion. We implicated serine-threonine kinase p21-activated kinase 1 (PAK1) as a novel target for PRL-activated Janus-kinase 2 (JAK2). JAK2-dependent PAK1 tyrosyl phosphorylation plays a critical role in regulation of both PAK1 kinase activity and scaffolding properties of PAK1. Tyrosyl phosphorylated PAK1 facilitates PRL-dependent motility via at least two mechanisms: formation of paxillin/GIT1/βPIX/pTyr-PAK1 complexes resulting in increased adhesion turnover and phosphorylation of actin-binding protein filamin A. Increased adhesion turnover is the basis for cell migration and phosphorylated filamin A stimulates the kinase activity of PAK1 and increases actin-regulating activity to facilitate cell motility. Tyrosyl phosphorylated PAK1 also stimulates invasion of breast cancer cells in response to PRL and three-dimensional (3D) collagen IV via transcription and secretion of MMP-1 and MMP-3 in a MAPK-dependent manner. These data illustrate the complex interaction between PRL and the cell microenvironment in breast cancer cells and suggest a pivotal role for PRL/PAK1 signaling in breast cancer metastasis.

Keywords

Prolactin JAK2 PAK1 Breast cancer cells Cell motility Cell adhesion Invasion βPIX MMPs Filamin A 

Notes

Acknowledgments

This work was supported by a Grant from the National Institutes of Health (R01 DK88127 to MD).

References

  1. 1.
    Stricker P, Grueter R (1928) Action of the anterior lobe of the pituitary gland on lactation. Compt Rend Soc Biol 99:1978–1980Google Scholar
  2. 2.
    Riddle O, Bates R, Dykshorn S (1933) The presentation, identification and assay of Prolactin-A hormone of the anterior pituitary. Am J Physiol 105:191–216Google Scholar
  3. 3.
    Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J 16:6926–6935PubMedCentralPubMedGoogle Scholar
  4. 4.
    Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178PubMedGoogle Scholar
  5. 5.
    Lyons WR (1958) Hormonal synergism in mammary growth. Proc R Soc Lond B Biol Sci 149:303–325PubMedGoogle Scholar
  6. 6.
    Reece R, Leathem J (1945) Growth of mammary glands of hypophysectomized rats following estrogen and lactogen administration. Exp Biol Med 59:122–124Google Scholar
  7. 7.
    Boutin JM, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, Banville D, Dusanter-Fourt I, Djiane J, Kelly PA (1988) Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77PubMedGoogle Scholar
  8. 8.
    Bazan JF (1989) A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochem Biophys Res Commun 164:788–795PubMedGoogle Scholar
  9. 9.
    Rui H, Kirken RA, Farrar WL (1994) Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 269:5364–5368PubMedGoogle Scholar
  10. 10.
    Campbell GS, Argetsinger LS, Ihle JN, Kelly PA, Rillema JA, Carter-Su C (1994) Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci U S A 91:5232–5236PubMedCentralPubMedGoogle Scholar
  11. 11.
    Ihle JN, Witthuhn B, Tang B, Yi T, Quelle FW (1994) Cytokine receptors and signal transduction. Baillieres Clin Haematol 7:17–48PubMedGoogle Scholar
  12. 12.
    Rui H, Lebrun JJ, Kirken RA, Kelly PA, Farrar WL (1994) JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization. Endocrinology 135:1299–1306PubMedGoogle Scholar
  13. 13.
    Lebrun JJ, Ali S, Sofer L, Ullrich A, Kelly PA (1994) Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem 269:14021–14026PubMedGoogle Scholar
  14. 14.
    Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501PubMedCentralPubMedGoogle Scholar
  15. 15.
    Gouilleux F, Wakao H, Mundt M, Groner B (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. Embo J 13:4361–4369PubMedCentralPubMedGoogle Scholar
  16. 16.
    Wakao H, Gouilleux F, Groner B (1994) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. Embo J 13:2182–2191PubMedCentralPubMedGoogle Scholar
  17. 17.
    DaSilva L, Rui H, Erwin RA, Howard OM, Kirken RA, Malabarba MG, Hackett RH, Larner AC, Farrar WL (1996) Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol 117:131–140PubMedGoogle Scholar
  18. 18.
    Das R, Vonderhaar BK (1996) Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene 13:1139–1145PubMedGoogle Scholar
  19. 19.
    Das R, Vonderhaar BK (1996) Activation of raf-1, MEK, and MAP kinase in prolactin responsive mammary cells. Breast Cancer Res Treat 40:141–149PubMedGoogle Scholar
  20. 20.
    Waters SB, Rillema JA (1989) Role of protein kinase C in the prolactin-induced responses in mouse mammary gland explants. Mol Cell Endocrinol 63:159–166PubMedGoogle Scholar
  21. 21.
    Berlanga JJ, Gualillo O, Buteau H, Applanat M, Kelly PA, Edery M (1997) Prolactin activates tyrosyl phosphorylation of insulin receptor substrate 1 and phosphatidylinositol-3-OH kinase. J Biol Chem 272:2050–2052PubMedGoogle Scholar
  22. 22.
    Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369PubMedGoogle Scholar
  23. 23.
    Maus MV, Reilly SC, Clevenger CV (1999) Prolactin as a chemoattractant for human breast carcinoma. Endocrinology 140:5447–5450PubMedGoogle Scholar
  24. 24.
    Kline JB, Moore DJ, Clevenger CV (2001) Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav1-receptor binding site. Mol Endocrinol 15:832–841PubMedGoogle Scholar
  25. 25.
    Akhtar N, Streuli CH (2006) Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J Cell Biol 173:781–793PubMedCentralPubMedGoogle Scholar
  26. 26.
    Aksamitiene E, Achanta S, Kolch W, Kholodenko BN, Hoek JB, Kiyatkin A (2011) Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells. Cell Signal 23:1794–1805PubMedCentralPubMedGoogle Scholar
  27. 27.
    Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV (2005) Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol 19:939–949PubMedGoogle Scholar
  28. 28.
    Miller SL, Antico G, Raghunath PN, Tomaszewski JE, Clevenger CV (2007) Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene 26:4668–4678PubMedGoogle Scholar
  29. 29.
    Hammer A, Rider L, Oladimeji P, Cook L, Li Q, Mattingly RR, Diakonova M (2013) Tyrosyl phosphorylated PAK1 regulates breast cancer cell motility in response to prolactin through filamin A. Mol Endocrinol 27:455–465PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zaidel-Bar R, Geiger B (2010) The switchable integrin adhesome. J Cell Sci 123:1385–1388PubMedCentralPubMedGoogle Scholar
  31. 31.
    Streuli CH, Akhtar N (2009) Signal co-operation between integrins and other receptor systems. Biochem J 418:491–506PubMedGoogle Scholar
  32. 32.
    Muschler J, Streuli CH (2010) Cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 2:a003202PubMedCentralPubMedGoogle Scholar
  33. 33.
    Rooney N, Streuli CH (2011) How integrins control mammary epithelial differentiation: a possible role for the ILK-PINCH-Parvin complex. FEBS Lett 585:1663–1672PubMedGoogle Scholar
  34. 34.
    Shiu RP, Paterson JA (1984) Alteration of cell shape, adhesion, and lipid accumulation in human breast cancer cells (T-47D) by human prolactin and growth hormone. Cancer Res 44:1178–1186PubMedGoogle Scholar
  35. 35.
    Canbay E, Norman M, Kilic E, Goffin V, Zachary I (1997) Prolactin stimulates the JAK2 and focal adhesion kinase pathways in human breast carcinoma T47-D cells. Biochem J 324 (Pt 1):231–236PubMedCentralPubMedGoogle Scholar
  36. 36.
    Schaller MD (2010) Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123:1007–1013PubMedGoogle Scholar
  37. 37.
    Acosta JJ, Munoz RM, Gonzalez L, Subtil-Rodriguez A, Dominguez-Caceres MA, Garcia-Martinez JM, Calcabrini A, Lazaro-Trueba I, Martin-Perez J (2003) Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol Endocrinol 17:2268–2282PubMedGoogle Scholar
  38. 38.
    Galbaugh T, Feeney YB, Clevenger CV (2010) Prolactin receptor-integrin cross-talk mediated by SIRPalpha in breast cancer cells. Mol Cancer Res 8:1413–1424PubMedCentralPubMedGoogle Scholar
  39. 39.
    Holtkamp W, Nagel GA, Wander HE, Rauschecker HF, von Heyden D (1984) Hyperprolactinemia is an indicator of progressive disease and poor prognosis in advanced breast cancer. Int J Cancer 34:323–328PubMedGoogle Scholar
  40. 40.
    Bhatavdekar JM, Shah NG, Balar DB, Patel DD, Bhaduri A, Trivedi SN, Karelia NH, Ghosh N, Shukla MK, Giri DD (1990) Plasma prolactin as an indicator of disease progression in advanced breast cancer. Cancer 65:2028–2032PubMedGoogle Scholar
  41. 41.
    Mujagic Z, Mujagic H (2004) Importance of serum prolactin determination in metastatic breast cancer patients. Croat Med J 45:176–180PubMedGoogle Scholar
  42. 42.
    Harbaum L, Pollheimer MJ, Bauernhofer T, Kornprat P, Lindtner RA, Schlemmer A, Rehak P, Langner C (2010) Clinicopathological significance of prolactin receptor expression in colorectal carcinoma and corresponding metastases. Mod Pathol 23:961–971PubMedGoogle Scholar
  43. 43.
    Liby K, Neltner B, Mohamet L, Menchen L, Ben-Jonathan N (2003) Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Res Treat 79:241–252PubMedGoogle Scholar
  44. 44.
    Rider L, Shatrova A, Feener EP, Webb L, Diakonova M (2007) JAK2 tyrosine kinase phosphorylates PAK1 and regulates PAK1 activity and functions. J Biol Chem 282:30985–30996PubMedGoogle Scholar
  45. 45.
    Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781PubMedGoogle Scholar
  46. 46.
    Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J (1997) Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7:202–210PubMedGoogle Scholar
  47. 47.
    Pirruccello M, Sondermann H, Pelton JG, Pellicena P, Hoelz A, Chernoff J, Wemmer DE, Kuriyan J (2006) A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol 361:312–326PubMedGoogle Scholar
  48. 48.
    Parrini MC, Camonis J, Matsuda M, de Gunzburg J (2009) Dissecting activation of the PAK1 kinase at protrusions in living cells. J Biol Chem 284:24133–24143PubMedCentralPubMedGoogle Scholar
  49. 49.
    King CC, Gardiner EM, Zenke FT, Bohl BP, Newton AC, Hemmings BA, Bokoch GM (2000) p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem 275:41201–41209PubMedGoogle Scholar
  50. 50.
    Bokoch GM, Reilly AM, Daniels RH, King CC, Olivera A, Spiegel S, Knaus UG (1998) A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J Biol Chem 273:8137–8144PubMedGoogle Scholar
  51. 51.
    Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, Kumar R (2002) Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4:681–690PubMedGoogle Scholar
  52. 52.
    Maceyka M, Alvarez SE, Milstien S, Spiegel S (2008) Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol Cell Biol 28:5687–5697PubMedCentralPubMedGoogle Scholar
  53. 53.
    Tang Y, Zhou H, Chen A, Pittman RN, Field J (2000) The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 275:9106–9109PubMedGoogle Scholar
  54. 54.
    Zhou GL, Zhuo Y, King CC, Fryer BH, Bokoch GM, Field J (2003) Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol Cell Biol 23:8058–8069PubMedCentralPubMedGoogle Scholar
  55. 55.
    Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1:183–192PubMedGoogle Scholar
  56. 56.
    Daniels RH, Hall PS, Bokoch GM (1998) Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. Embo J 17:754–764PubMedCentralPubMedGoogle Scholar
  57. 57.
    Bagheri-Yarmand R, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ, Kumar R (2001) Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J Biol Chem 276:29403–29409PubMedGoogle Scholar
  58. 58.
    Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R (2006) PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25:2931–2936PubMedGoogle Scholar
  59. 59.
    Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T (2003) Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 12:841–849PubMedGoogle Scholar
  60. 60.
    Alahari SK, Reddig PJ, Juliano RL (2004) The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK. EMBO J 23:2777–2788PubMedCentralPubMedGoogle Scholar
  61. 61.
    Talukder AH, Meng Q, Kumar R (2006) CRIPak, a novel endogenous Pak1 inhibitor. Oncogene 25:1311–1319PubMedGoogle Scholar
  62. 62.
    Xia C, Ma W, Stafford LJ, Marcus S, Xiong WC, Liu M (2001) Regulation of the p21-activated kinase (PAK) by a human Gbeta -like WD-repeat protein, hPIP1. Proc Natl Acad Sci U S A 98:6174–6179PubMedCentralPubMedGoogle Scholar
  63. 63.
    Nikolic M, Chou MM, Lu W, Mayer BJ, Tsai LH (1998) The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395:194–198PubMedGoogle Scholar
  64. 64.
    Koh CG, Tan EJ, Manser E, Lim L (2002) The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2 C family. Curr Biol 12:317–321PubMedGoogle Scholar
  65. 65.
    Chen S, Yin X, Zhu X, Yan J, Ji S, Chen C, Cai M, Zhang S, Zong H, Hu Y, Yuan Z, Shen Z, Gu J (2003) The C-terminal kinase domain of the p34cdc2-related PITSLRE protein kinase (p110 C) associates with p21-activated kinase 1 and inhibits its activity during anoikis. J Biol Chem 278:20029–20036PubMedGoogle Scholar
  66. 66.
    Frost JA, Khokhlatchev A, Stippec S, White MA, Cobb MH (1998) Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J Biol Chem 273:28191–28198PubMedGoogle Scholar
  67. 67.
    Sells MA, Boyd JT, Chernoff J (1999) p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145:837–849PubMedCentralPubMedGoogle Scholar
  68. 68.
    Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS (1999) Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J Cell Biol 145:851–863PubMedCentralPubMedGoogle Scholar
  69. 69.
    Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R (2000) Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275:12041–12050PubMedGoogle Scholar
  70. 70.
    Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM (2005) Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem 280:2055–2064PubMedGoogle Scholar
  71. 71.
    Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, Mei Q (2013) p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem 288:20093–20099PubMedCentralPubMedGoogle Scholar
  72. 72.
    Coles LC, Shaw PE (2002) PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 21:2236–2244PubMedGoogle Scholar
  73. 73.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269PubMedGoogle Scholar
  74. 74.
    Kohn AD, Takeuchi F, Roth RA (1996) Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271:21920–21926PubMedGoogle Scholar
  75. 75.
    Higuchi M, Onishi K, Kikuchi C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10:1356–1364PubMedGoogle Scholar
  76. 76.
    Thullberg M, Gad A, Beeser A, Chernoff J, Stromblad S (2007) The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity. Oncogene 26:1820–1828PubMedGoogle Scholar
  77. 77.
    Tao J, Oladimeji P, Rider L, Diakonova M (2011) PAK1-Nck regulates cyclin D1 promoter activity in response to prolactin. Mol Endocrinol 25:1565–1578PubMedCentralPubMedGoogle Scholar
  78. 78.
    Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG (2000) Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A 97:185–189PubMedCentralPubMedGoogle Scholar
  79. 79.
    Wang RA, Mazumdar A, Vadlamudi RK, Kumar R (2002) P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. Embo J 21:5437–5447PubMedCentralPubMedGoogle Scholar
  80. 80.
    Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R (2000) Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275:36238–36244PubMedGoogle Scholar
  81. 81.
    Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, Mandal M, Kumar R (2002) p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3:767–773PubMedCentralPubMedGoogle Scholar
  82. 82.
    Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95:7480–7484PubMedCentralPubMedGoogle Scholar
  83. 83.
    Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915PubMedGoogle Scholar
  84. 84.
    Vadlamudi RK, Barnes CJ, Rayala S, Li F, Balasenthil S, Marcus S, Goodson HV, Sahin AA, Kumar R (2005) p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol Cell Biol 25:3726–3736PubMedCentralPubMedGoogle Scholar
  85. 85.
    Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155:1109–1116PubMedCentralPubMedGoogle Scholar
  86. 86.
    Zhao ZS, Lim JP, Ng YW, Lim L, Manser E (2005) The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 20:237–249PubMedGoogle Scholar
  87. 87.
    Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK, Kumar R (2004) p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 279:1422–1428PubMedGoogle Scholar
  88. 88.
    Balasenthil S, Barnes CJ, Rayala SK, Kumar R (2004) Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells. FEBS Lett 567:243–247PubMedGoogle Scholar
  89. 89.
    Mazumdar A, Kumar R (2003) Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett 535:6–10PubMedGoogle Scholar
  90. 90.
    Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, Cobb MH (1997) Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. Embo J 16:6426–6438PubMedCentralPubMedGoogle Scholar
  91. 91.
    Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J, Field J (1997) Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17:4454–4464PubMedCentralPubMedGoogle Scholar
  92. 92.
    Beeser A, Jaffer ZM, Hofmann C, Chernoff J (2005) Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 280:36609–36615PubMedGoogle Scholar
  93. 93.
    Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628PubMedGoogle Scholar
  94. 94.
    Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM (2000) p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20:453–461PubMedCentralPubMedGoogle Scholar
  95. 95.
    Jin S, Zhuo Y, Guo W, Field J (2005) p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 280:24698–24705PubMedGoogle Scholar
  96. 96.
    Wolf D, Witte V, Laffert B, Blume K, Stromer E, Trapp S, d’Aloja P, Schurmann A, Baur AS (2001) HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 7:1217–1224PubMedGoogle Scholar
  97. 97.
    Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollander P, Kumar R (2004) Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 5:575–585PubMedGoogle Scholar
  98. 98.
    Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296PubMedGoogle Scholar
  99. 99.
    Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926PubMedGoogle Scholar
  100. 100.
    Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH (2000) Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 275:19693–19699PubMedGoogle Scholar
  101. 101.
    Dadke D, Fryer BH, Golemis EA, Field J (2003) Activation of p21-activated kinase 1-nuclear factor kappaB signaling by Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res 63:8837–8847PubMedGoogle Scholar
  102. 102.
    Friedland JC, Lakins JN, Kazanietz MG, Chernoff J, Boettiger D, Weaver VM (2007) alpha6beta4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-kappaB-dependent resistance to apoptosis in 3D mammary acini. J Cell Sci 120:3700–3712PubMedGoogle Scholar
  103. 103.
    Foryst-Ludwig A, Naumann M (2000) p21-activated kinase 1 activates the nuclear factor kappa B (NF-kappa B)-inducing kinase-Ikappa B kinases NF-kappa B pathway and proinflammatory cytokines in Helicobacter pylori infection. J Biol Chem 275:39779–39785PubMedGoogle Scholar
  104. 104.
    Sells MA, Pfaff A, Chernoff J (2000) Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol 151:1449–1458PubMedCentralPubMedGoogle Scholar
  105. 105.
    Dharmawardhane S, Sanders LC, Martin SS, Daniels RH, Bokoch GM (1997) Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J Cell Biol 138:1265–1278PubMedCentralPubMedGoogle Scholar
  106. 106.
    Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82PubMedGoogle Scholar
  107. 107.
    Aizawa H, Sutoh K, Yahara I (1996) Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. J Cell Biol 132:335–344PubMedGoogle Scholar
  108. 108.
    Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259PubMedGoogle Scholar
  109. 109.
    Delorme V, Machacek M, DerMardirossian C, Anderson KL, Wittmann T, Hanein D, Waterman-Storer C, Danuser G, Bokoch GM (2007) Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell 13:646–662PubMedCentralPubMedGoogle Scholar
  110. 110.
    Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R (2004) p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5:154–160PubMedCentralPubMedGoogle Scholar
  111. 111.
    Ikebe M, Hartshorne DJ (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 260:10027–10031PubMedGoogle Scholar
  112. 112.
    Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283:2083–2085PubMedGoogle Scholar
  113. 113.
    Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB (1998) Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 19:839–854PubMedGoogle Scholar
  114. 114.
    Price LS, Leng J, Schwartz MA, Bokoch GM (1998) Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9:1863–1871PubMedCentralPubMedGoogle Scholar
  115. 115.
    Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA (1999) A role for p21-activated kinase in endothelial cell migration. J Cell Biol 147:831–844PubMedCentralPubMedGoogle Scholar
  116. 116.
    del Pozo MA, Price LS, Alderson NB, Ren XD, Schwartz MA (2000) Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 19:2008–2014PubMedCentralPubMedGoogle Scholar
  117. 117.
    Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L (1997) Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17:1129–1143PubMedCentralPubMedGoogle Scholar
  118. 118.
    Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L (1998) A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 18:2153–2163PubMedCentralPubMedGoogle Scholar
  119. 119.
    Delorme-Walker VD, Peterson JR, Chernoff J, Waterman CM, Danuser G, DerMardirossian C, Bokoch GM (2011) Pak1 regulates focal adhesion strength, myosin IIA distribution, and actin dynamics to optimize cell migration. J Cell Biol 193:1289–1303PubMedCentralPubMedGoogle Scholar
  120. 120.
    Liu F, Jia L, Thompson-Baine AM, Puglise JM, Ter Beest MB, Zegers MM (2010) Cadherins and Pak1 control contact inhibition of proliferation by Pak1-betaPIX-GIT complex-dependent regulation of cell-matrix signaling. Mol Cell Biol 30:1971–1983PubMedCentralPubMedGoogle Scholar
  121. 121.
    Smith SD, Jaffer ZM, Chernoff J, Ridley AJ (2008) PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci 121:3729–3736PubMedCentralPubMedGoogle Scholar
  122. 122.
    ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL (2006) Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol 172:759–769PubMedCentralPubMedGoogle Scholar
  123. 123.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89PubMedGoogle Scholar
  124. 124.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83PubMedGoogle Scholar
  125. 125.
    Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166PubMedGoogle Scholar
  126. 126.
    Nieto MA, Sargent MG, Wilkinson DG, Cooke J (1994) Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264:835–839PubMedGoogle Scholar
  127. 127.
    Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res 65:3179–3184PubMedGoogle Scholar
  128. 128.
    Lozano E, Frasa MA, Smolarczyk K, Knaus UG, Braga VM (2008) PAK is required for the disruption of E-cadherin adhesion by the small GTPase Rac. J Cell Sci 121:933–938PubMedGoogle Scholar
  129. 129.
    Nola S, Daigaku R, Smolarczyk K, Carstens M, Martin-Martin B, Longmore G, Bailly M, Braga VM (2011) Ajuba is required for Rac activation and maintenance of E-cadherin adhesion. J Cell Biol 195:855–871PubMedCentralPubMedGoogle Scholar
  130. 130.
    Tay HG, Ng YW, Manser E (2010) A vertebrate-specific Chp-PAK-PIX pathway maintains E-cadherin at adherens junctions during zebrafish epiboly. PLoS One 5:e10125PubMedCentralPubMedGoogle Scholar
  131. 131.
    Barnes CJ, Bagheri-Yarmand R, Mandal M, Yang Z, Clayman GL, Hong WK, Kumar R (2003) Suppression of epidermal growth factor receptor, mitogen-activated protein kinase, and Pak1 pathways and invasiveness of human cutaneous squamous cancer cells by the tyrosine kinase inhibitor ZD1839 (Iressa). Mol Cancer Ther 2:345–351PubMedGoogle Scholar
  132. 132.
    He H, Shulkes A, Baldwin GS (2008) PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim Biophys Acta 1783:1943–1954PubMedGoogle Scholar
  133. 133.
    Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, Wu W (2012) A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene 31:1001–1012PubMedGoogle Scholar
  134. 134.
    He H, Huynh N, Liu KH, Malcontenti-Wilson C, Zhu J, Christophi C, Shulkes A, Baldwin GS (2012) P-21 activated kinase 1 knockdown inhibits beta-catenin signalling and blocks colorectal cancer growth. Cancer Lett 317:65–71PubMedGoogle Scholar
  135. 135.
    Lv Z, Hu M, Zhen J, Lin J, Wang Q, Wang R (2013) Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering beta-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol 45:255–264PubMedGoogle Scholar
  136. 136.
    Chen L, Necela BM, Su W, Yanagisawa M, Anastasiadis PZ, Fields AP, Thompson EA (2006) Peroxisome proliferator-activated receptor gamma promotes epithelial to mesenchymal transformation by Rho GTPase-dependent activation of ERK1/2. J Biol Chem 281:24575–24587PubMedGoogle Scholar
  137. 137.
    Yuan L, Santi M, Rushing EJ, Cornelison R, MacDonald TJ (2010) ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration. Clin Exp Metastasis 27:481–491PubMedCentralPubMedGoogle Scholar
  138. 138.
    Aoki H, Yokoyama T, Fujiwara K, Tari AM, Sawaya R, Suki D, Hess KR, Aldape KD, Kondo S, Kumar R, Kondo Y (2007) Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin Cancer Res 13:6603–6609PubMedGoogle Scholar
  139. 139.
    Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, Konicek S, Hom J, Marshall M, Graff JR (2004) Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10:3448–3456PubMedGoogle Scholar
  140. 140.
    Ito M, Nishiyama H, Kawanishi H, Matsui S, Guilford P, Reeve A, Ogawa O (2007) P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J Urol 178:1073–1079PubMedGoogle Scholar
  141. 141.
    Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T, King W, Wilber K, Mihatsch MJ, Moch H (2003) Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 163:985–992PubMedCentralPubMedGoogle Scholar
  142. 142.
    Bekri S, Adelaide J, Merscher S, Grosgeorge J, Caroli-Bosc F, Perucca-Lostanlen D, Kelley PM, Pebusque MJ, Theillet C, Birnbaum D, Gaudray P (1997) Detailed map of a region commonly amplified at 11q13 → q14 in human breast carcinoma. Cytogenet Cell Genet 79:125–131PubMedGoogle Scholar
  143. 143.
    Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO (2007) P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 67:3601–3608PubMedGoogle Scholar
  144. 144.
    Kamai T, Shirataki H, Nakanishi K, Furuya N, Kambara T, Abe H, Oyama T, Yoshida K (2010) Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer 10:164PubMedCentralPubMedGoogle Scholar
  145. 145.
    O’Sullivan GC, Tangney M, Casey G, Ambrose M, Houston A, Barry OP (2007) Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. Int J Cancer 121:1930–1940PubMedGoogle Scholar
  146. 146.
    McCarty SK, Saji M, Zhang X, Jarjoura D, Fusco A, Vasko VV, Ringel MD (2010) Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. Endocr Relat Cancer 17:989–999PubMedCentralPubMedGoogle Scholar
  147. 147.
    Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–471PubMedGoogle Scholar
  148. 148.
    Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA, Aldaz M, Khan S, Kumar R (2006) P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res 66:1694–1701PubMedGoogle Scholar
  149. 149.
    Bostner J, Skoog L, Fornander T, Nordenskjold B, Stal O (2010) Estrogen receptor-alpha phosphorylation at serine 305, nuclear p21-activated kinase 1 expression, and response to tamoxifen in postmenopausal breast cancer. Clin Cancer Res 16:1624–1633PubMedGoogle Scholar
  150. 150.
    Holm C, Rayala S, Jirstrom K, Stal O, Kumar R, Landberg G (2006) Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst 98:671–680PubMedGoogle Scholar
  151. 151.
    Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, Chernoff J (2010) A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene 29:5839–5849PubMedCentralPubMedGoogle Scholar
  152. 152.
    Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, Wang S, Barretina J, Weir BA, Zhao JJ, Polyak K, Golub TR, Beroukhim R, Hahn WC (2012) PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 31:3397–3408PubMedCentralPubMedGoogle Scholar
  153. 153.
    Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R (2009) PAK signaling in oncogenesis. Oncogene 28:2545–2555PubMedCentralPubMedGoogle Scholar
  154. 154.
    Bekri S, Adelaide J, Merscher S, Grosgeorge J, Caroli-Bosc F, Perucca-Lostanlen D, Kelley PM, Pebusque MJ, Theillet C, Birnbaum D, Gaudray P (1997) Detailed map of a region commonly amplified at 11q13 → q14 in human breast carcinoma. Cytogenet Cell Genet 79:125–131PubMedGoogle Scholar
  155. 155.
    Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, Turley H, O’Brien T, Vucic D, Harris AL, Belvin M, Friedman LS, Blackwood EM, Koeppen H, Hoeflich KP (2011) Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA 108:7177–7182PubMedCentralPubMedGoogle Scholar
  156. 156.
    Salh B, Marotta A, Wagey R, Sayed M, Pelech S (2002) Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. Int J Cancer 98:148–154PubMedGoogle Scholar
  157. 157.
    Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020PubMedGoogle Scholar
  158. 158.
    Li Q, Mullins SR, Sloane BF, Mattingly RR (2008) p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 10:314–329PubMedCentralPubMedGoogle Scholar
  159. 159.
    Coniglio SJ, Zavarella S, Symons MH (2008) Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol 28:4162–4172PubMedCentralPubMedGoogle Scholar
  160. 160.
    Rider L, Oladimeji P, Diakonova M (2013) PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. Mol Endocrinol 27:1048–1064PubMedCentralPubMedGoogle Scholar
  161. 161.
    Premont RT, Perry SJ, Schmalzigaug R, Roseman JT, Xing Y, Claing A (2004) The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell Signal 16:1001–1011PubMedGoogle Scholar
  162. 162.
    Paris S, Longhi R, Santambrogio P, de Curtis I (2003) Leucine-zipper-mediated homo- and hetero-dimerization of GIT family p95-ARF GTPase-activating protein, PIX-, paxillin-interacting proteins 1 and 2. Biochem J 372:391–398PubMedCentralPubMedGoogle Scholar
  163. 163.
    Kim S, Lee SH, Park D (2001) Leucine zipper-mediated homodimerization of the p21-activated kinase-interacting factor, beta Pix. Implication for a role in cytoskeletal reorganization. J Biol Chem 276:10581–10584PubMedGoogle Scholar
  164. 164.
    Loo TH, Ng YW, Lim L, Manser E (2004) GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol Cell Biol 24:3849–3859PubMedCentralPubMedGoogle Scholar
  165. 165.
    Zhao ZS, Manser E, Loo TH, Lim L (2000) Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 20:6354–6363PubMedCentralPubMedGoogle Scholar
  166. 166.
    Zhao ZS, Manser E (2005) PAK and other Rho-associated kinases-effectors with surprisingly diverse mechanisms of regulation. Biochem J 386:201–214PubMedCentralPubMedGoogle Scholar
  167. 167.
    Manabe R, Kovalenko M, Webb DJ, Horwitz AR (2002) GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci 115:1497–1510PubMedGoogle Scholar
  168. 168.
    Brown MC, West KA, Turner CE (2002) Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13:1550–1565PubMedCentralPubMedGoogle Scholar
  169. 169.
    Rider L, Diakonova M (2011) Adapter protein SH2B1beta binds filamin A to regulate prolactin-dependent cytoskeletal reorganization and cell motility. Mol Endocrinol 25:1231–1243PubMedCentralPubMedGoogle Scholar
  170. 170.
    Borm B, Requardt RP, Herzog V, Kirfel G (2005) Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp Cell Res 302:83–95PubMedGoogle Scholar
  171. 171.
    Ridley AJ (1994) Membrane ruffling and signal transduction. Bioessays 16:321–327PubMedGoogle Scholar
  172. 172.
    Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145PubMedGoogle Scholar
  173. 173.
    Nakamura F, Stossel TP, Hartwig JH (2011) The filamins: organizers of cell structure and function. Cell Adh Migr 5:160–169PubMedCentralPubMedGoogle Scholar
  174. 174.
    Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR, Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255:325–327PubMedGoogle Scholar
  175. 175.
    Woo MS, Ohta Y, Rabinovitz I, Stossel TP, Blenis J (2004) Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol Cell Biol 24:3025–3035PubMedCentralPubMedGoogle Scholar
  176. 176.
    Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, Kwiatkowski DJ, Walsh CA (2006) Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A 103:19836–19841PubMedCentralPubMedGoogle Scholar
  177. 177.
    Johansen LD, Naumanen T, Knudsen A, Westerlund N, Gromova I, Junttila M, Nielsen C, Bottzauw T, Tolkovsky A, Westermarck J, Coffey ET, Jaattela M, Kallunki T (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121:854–864PubMedGoogle Scholar
  178. 178.
    Sarkisian MR, Bartley CM, Chi H, Nakamura F, Hashimoto-Torii K, Torii M, Flavell RA, Rakic P (2006) MEKK4 signaling regulates filamin expression and neuronal migration. Neuron 52:789–801PubMedCentralPubMedGoogle Scholar
  179. 179.
    Xu Y, Bismar TA, Su J, Xu B, Kristiansen G, Varga Z, Teng L, Ingber DE, Mammoto A, Kumar R, Alaoui-Jamali MA (2010) Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 207:2421–2437PubMedCentralPubMedGoogle Scholar
  180. 180.
    Rider L, Tao J, Snyder S, Brinley B, Lu J, Diakonova M (2009) Adapter protein SH2B1beta cross-links actin filaments and regulates actin cytoskeleton. Mol Endocrinol 23:1065–1076PubMedCentralPubMedGoogle Scholar
  181. 181.
    Rui L, Carter-Su C (1999) Identification of SH2-bbeta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci U S A 96:7172–7177PubMedCentralPubMedGoogle Scholar
  182. 182.
    Schaller MD, Parsons JT (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15:2635–2645PubMedCentralPubMedGoogle Scholar
  183. 183.
    Laukaitis CM, Webb DJ, Donais K, Horwitz AF (2001) Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol 153:1427–1440PubMedCentralPubMedGoogle Scholar
  184. 184.
    Deakin NO, Turner CE (2008) Paxillin comes of age. J Cell Sci 121:2435–2444PubMedCentralPubMedGoogle Scholar
  185. 185.
    Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148PubMedGoogle Scholar
  186. 186.
    Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC, Hanafusa H (1993) Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphorylated paxillin in CT10-transformed fibroblasts. Mol Cell Biol 13:4648–4656PubMedCentralPubMedGoogle Scholar
  187. 187.
    Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM (2000) Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol 148:957–970PubMedCentralPubMedGoogle Scholar
  188. 188.
    Stofega MR, Sanders LC, Gardiner EM, Bokoch GM (2004) Constitutive p21-activated kinase (PAK) activation in breast cancer cells as a result of mislocalization of PAK to focal adhesions. Mol Biol Cell 15:2965–2977PubMedCentralPubMedGoogle Scholar
  189. 189.
    Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR (2006) Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol 173:587–589PubMedCentralPubMedGoogle Scholar
  190. 190.
    Daniels RH, Zenke FT, Bokoch GM (1999) alphaPix stimulates p21-activated kinase activity through exchange factor-dependent and -independent mechanisms. J Biol Chem 274:6047–6050PubMedGoogle Scholar
  191. 191.
    Rennefahrt UE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J, Knapp S, Turk BE, Peterson JR (2007) Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem 282:15667–15678PubMedGoogle Scholar
  192. 192.
    Geiger B, Yamada KM (2011) Molecular architecture and function of matrix adhesions. Cold Spring Harb Perspect Biol 3Google Scholar
  193. 193.
    Boyd NF, Lockwood GA, Martin LJ, Knight JA, Byng JW, Yaffe MJ, Tritchler DL (1998) Mammographic densities and breast cancer risk. Breast Dis 10:113–126PubMedGoogle Scholar
  194. 194.
    Colpaert C, Vermeulen P, Van Marck E, Dirix L (2001) The presence of a fibrotic focus is an independent predictor of early metastasis in lymph node-negative breast cancer patients. Am J Surg Pathol 25:1557–1558PubMedGoogle Scholar
  195. 195.
    Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA (2007) Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:43–49PubMedGoogle Scholar
  196. 196.
    McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169PubMedGoogle Scholar
  197. 197.
    Vachon CM, van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, Pankratz VS (2007) Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 9:217PubMedCentralPubMedGoogle Scholar
  198. 198.
    Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163:583–595PubMedCentralPubMedGoogle Scholar
  199. 199.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254PubMedGoogle Scholar
  200. 200.
    Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10 A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268PubMedGoogle Scholar
  201. 201.
    Adriance MC, Inman JL, Petersen OW, Bissell MJ (2005) Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 7:190–197PubMedCentralPubMedGoogle Scholar
  202. 202.
    Elsdale T, Bard J (1972) Collagen substrata for studies on cell behavior. J Cell Biol 54:626–637PubMedCentralPubMedGoogle Scholar
  203. 203.
    Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712PubMedGoogle Scholar
  204. 204.
    Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309PubMedCentralPubMedGoogle Scholar
  205. 205.
    Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264PubMedGoogle Scholar
  206. 206.
    Ziober BL, Turner MA, Palefsky JM, Banda MJ, Kramer RH (2000) Type I collagen degradation by invasive oral squamous cell carcinoma. Oral Oncol 36:365–372PubMedGoogle Scholar
  207. 207.
    Kerkela E, Saarialho-Kere U (2003) Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 12:109–125PubMedGoogle Scholar
  208. 208.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3Google Scholar
  209. 209.
    Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE (1996) Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr 6:391–411PubMedGoogle Scholar
  210. 210.
    Murray GI, Duncan ME, O’Neil P, McKay JA, Melvin WT, Fothergill JE (1998) Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol 185:256–261PubMedGoogle Scholar
  211. 211.
    Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE (1996) Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med 2:461–462PubMedGoogle Scholar
  212. 212.
    Airola K, Karonen T, Vaalamo M, Lehti K, Lohi J, Kariniemi AL, Keski-Oja J, Saarialho-Kere UK (1999) Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas. Br J Cancer 80:733–743PubMedCentralPubMedGoogle Scholar
  213. 213.
    Ito T, Ito M, Shiozawa J, Naito S, Kanematsu T, Sekine I (1999) Expression of the MMP-1 in human pancreatic carcinoma: relationship with prognostic factor. Mod Pathol 12:669–674PubMedGoogle Scholar
  214. 214.
    Inoue T, Yashiro M, Nishimura S, Maeda K, Sawada T, Ogawa Y, Sowa M, Chung KH (1999) Matrix metalloproteinase-1 expression is a prognostic factor for patients with advanced gastric cancer. Int J Mol Med 4:73–77PubMedGoogle Scholar
  215. 215.
    Nakopoulou L, Giannopoulou I, Gakiopoulou H, Liapis H, Tzonou A, Davaris PS (1999) Matrix metalloproteinase-1 and -3 in breast cancer: correlation with progesterone receptors and other clinicopathologic features. Hum Pathol 30:436–442PubMedGoogle Scholar
  216. 216.
    Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD (2005) Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 11:481–483PubMedGoogle Scholar
  217. 217.
    Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146PubMedCentralPubMedGoogle Scholar
  218. 218.
    Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872PubMedCentralPubMedGoogle Scholar
  219. 219.
    Lochter A, Srebrow A, Sympson CJ, Terracio N, Werb Z, Bissell MJ (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J Biol Chem 272:5007–5015PubMedGoogle Scholar
  220. 220.
    Sternlicht MD, Bissell MJ, Werb Z (2000) The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19:1102–1113PubMedCentralPubMedGoogle Scholar
  221. 221.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedCentralPubMedGoogle Scholar
  222. 222.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedCentralPubMedGoogle Scholar
  223. 223.
    Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedCentralPubMedGoogle Scholar
  224. 224.
    Stetler-Stevenson WG, Liotta LA, Kleiner DE, Jr (1993) Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 7:1434–1441PubMedGoogle Scholar
  225. 225.
    Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336PubMedGoogle Scholar
  226. 226.
    Ballin M, Gomez DE, Sinha CC, Thorgeirsson UP (1988) Ras oncogene mediated induction of a 92 kDa metalloproteinase; strong correlation with the malignant phenotype. Biochem Biophys Res Commun 154:832–838PubMedGoogle Scholar
  227. 227.
    Zucker S, Lysik RM, Zarrabi MH, Moll U (1993) M(r) 92,000 type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res 53:140–146PubMedGoogle Scholar
  228. 228.
    Radisky ES, Radisky DC (2010) Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15:201–212PubMedCentralPubMedGoogle Scholar
  229. 229.
    Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257PubMedCentralPubMedGoogle Scholar
  230. 230.
    Duffy MJ, McGowan PM, Gallagher WM (2008) Cancer invasion and metastasis: changing views. J Pathol 214:283–293PubMedGoogle Scholar
  231. 231.
    Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48:411–424PubMedGoogle Scholar
  232. 232.
    Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672PubMedGoogle Scholar
  233. 233.
    Barcus CE, Keely PJ, Eliceiri KW, Schuler LA (2013) Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem 288:12722–12732PubMedCentralPubMedGoogle Scholar
  234. 234.
    Arendt LM, Rugowski DE, Grafwallner-Huseth TA, Garcia-Barchino MJ, Rui H, Schuler LA (2011) Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer. Breast Cancer Res 13:R11PubMedCentralPubMedGoogle Scholar
  235. 235.
    Gutzman JH, Rugowski DE, Nikolai SE, Schuler LA (2007) Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene 26:6341–6348PubMedCentralPubMedGoogle Scholar
  236. 236.
    Carver KC, Schuler LA (2008) Prolactin does not require insulin-like growth factor intermediates but synergizes with insulin-like growth factor I in human breast cancer cells. Mol Cancer Res 6:634–643PubMedGoogle Scholar
  237. 237.
    Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H (2005) Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 24:746–760PubMedGoogle Scholar
  238. 238.
    Plotnikov A, Varghese B, Tran TH, Liu C, Rui H, Fuchs SY (2009) Impaired turnover of prolactin receptor contributes to transformation of human breast cells. Cancer Res 69:3165–3172PubMedCentralPubMedGoogle Scholar
  239. 239.
    Zhou L, Yan C, Gieling RG, Kida Y, Garner W, Li W, Han YP (2009) Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated kinase-1. BMC Immunol 10:15PubMedCentralPubMedGoogle Scholar
  240. 240.
    Fu D, Yang Y, Xiao Y, Lin H, Ye Y, Zhan Z, Liang L, Yang X, Sun L, Xu H (2012) Role of p21-activated kinase 1 in regulating the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Rheumatology (Oxford) 51:1170–1180Google Scholar
  241. 241.
    Elloul S, Vaksman O, Stavnes HT, Trope CG, Davidson B, Reich R (2010) Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin Exp Metastasis 27:161–172PubMedGoogle Scholar
  242. 242.
    Ferri N, Colombo G, Ferrandi C, Raines EW, Levkau B, Corsini A (2007) Simvastatin reduces MMP1 expression in human smooth muscle cells cultured on polymerized collagen by inhibiting Rac1 activation. Arterioscler Thromb Vasc Biol 27:1043–1049PubMedGoogle Scholar
  243. 243.
    Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23PubMedGoogle Scholar
  244. 244.
    Enjoji M, Kotoh K, Iwamoto H, Nakamuta M, Nawata H (2000) Self-regulation of type I collagen degradation by collagen-induced production of matrix metalloproteinase-1 on cholangiocarcinoma and hepatocellular carcinoma cells. In Vitro Cell Dev Biol Anim 36:71–73PubMedGoogle Scholar
  245. 245.
    Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164:1575–1585PubMedCentralPubMedGoogle Scholar
  246. 246.
    Langholz O, Rockel D, Mauch C, Kozlowska E, Bank I, Krieg T, Eckes B (1995) Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J Cell Biol 131:1903–1915PubMedGoogle Scholar
  247. 247.
    Cortes-Reynosa P, Robledo T, Macias-Silva M, Wu SV, Salazar EP (2008) Src kinase regulates metalloproteinase-9 secretion induced by type IV collagen in MCF-7 human breast cancer cells. Matrix Biol 27:220–231PubMedGoogle Scholar
  248. 248.
    Castro-Sanchez L, Soto-Guzman A, Guaderrama-Diaz M, Cortes-Reynosa P, Salazar EP (2011) Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells. Clin Exp Metastasis 28:463–477PubMedGoogle Scholar
  249. 249.
    Haas TL, Davis SJ, Madri JA (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273:3604–3610PubMedGoogle Scholar
  250. 250.
    Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338PubMedGoogle Scholar
  251. 251.
    Nguyen M, Arkell J, Jackson CJ (2000) Three-dimensional collagen matrices induce delayed but sustained activation of gelatinase A in human endothelial cells via MT1-MMP. Int J Biochem Cell Biol 32:621–631PubMedGoogle Scholar
  252. 252.
    Han YP, Tuan TL, Wu H, Hughes M, Garner WL (2001) TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci 114:131–139PubMedCentralPubMedGoogle Scholar
  253. 253.
    Seltzer JL, Lee AY, Akers KT, Sudbeck B, Southon EA, Wayner EA, Eisen AZ (1994) Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res 213:365–374PubMedGoogle Scholar
  254. 254.
    Ruangpanit N, Chan D, Holmbeck K, Birkedal-Hansen H, Polarek J, Yang C, Bateman JF, Thompson EW (2001) Gelatinase A (MMP-2) activation by skin fibroblasts: dependence on MT1-MMP expression and fibrillar collagen form. Matrix Biol 20:193–203PubMedGoogle Scholar
  255. 255.
    Ellerbroek SM, Fishman DA, Kearns AS, Bafetti LM, Stack MS (1999) Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through beta1 integrin. Cancer Res 59:1635–1641PubMedGoogle Scholar
  256. 256.
    Gilles C, Polette M, Seiki M, Birembaut P, Thompson EW (1997) Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest 76:651–660PubMedGoogle Scholar
  257. 257.
    Kurschat P, Zigrino P, Nischt R, Breitkopf K, Steurer P, Klein CE, Krieg T, Mauch C (1999) Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cell lines. J Biol Chem 274:21056–21062PubMedGoogle Scholar
  258. 258.
    Maquoi E, Frankenne F, Noel A, Krell HW, Grams F, Foidart JM (2000) Type IV collagen induces matrix metalloproteinase 2 activation in HT1080 fibrosarcoma cells. Exp Cell Res 261:348–359PubMedGoogle Scholar
  259. 259.
    Borrirukwanit K, Lafleur MA, Mercuri FA, Blick T, Price JT, Fridman R, Pereira JJ, Leardkamonkarn V, Thompson EW (2007) The type I collagen induction of MT1-MMP-mediated MMP-2 activation is repressed by alphaVbeta3 integrin in human breast cancer cells. Matrix Biol 26:291–305PubMedGoogle Scholar
  260. 260.
    Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16:213–223PubMedGoogle Scholar
  261. 261.
    Vogel V, Sheetz MP (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol 21:38–46PubMedCentralPubMedGoogle Scholar
  262. 262.
    Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219PubMedCentralPubMedGoogle Scholar
  263. 263.
    Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of ToledoToledoUSA

Personalised recommendations