Regulation of Blood Vessels by Prolactin and Vasoinhibins

  • Carmen ClappEmail author
  • Stéphanie Thebault
  • Yazmín Macotela
  • Bibiana Moreno-Carranza
  • Jakob Triebel
  • Gonzalo Martínez de la Escalera
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 846)


Prolactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function. This review briefly describes the vascular actions of PRL and vasoinhibins, and addresses how their interplay could help drive biological effects of PRL in the context of health and disease.


Vascular Endothelial Growth Factor Mammary Gland Corpus Luteum Endothelial Cell Proliferation Transient Receptor Potential Canonical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Guadalupe Calderón for her artistic illustration, Fernando López-Barrera, Gabriel Nava, and Francisco Javier Valles Valenzuela for their technical assistance, and Dorothy D. Pless for critically editing the manuscript. This work was supported by grants from the National Council of Science and Technology of Mexico (161594 and 179496) and from UNAM (IN200312).


  1. 1.
    Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19(3):225–268CrossRefPubMedGoogle Scholar
  2. 2.
    Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR (2006) Focus on prolactin as a metabolic hormone. Trends Endocr Metab TEM 17(3):110–116CrossRefGoogle Scholar
  3. 3.
    Grattan DR, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20(6):752–763CrossRefPubMedGoogle Scholar
  4. 4.
    Clapp C, Thebault S, Jeziorski MC, Martinez De La Escalera G (2009) Peptide hormone regulation of angiogenesis. Physiol Rev 89(4):1177–1215CrossRefPubMedGoogle Scholar
  5. 5.
    Ferrara N, Clapp C, Weiner R (1991) The 16 K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129(2):896–900CrossRefPubMedGoogle Scholar
  6. 6.
    Clapp C, Martial JA, Guzman RC, Rentier-Delure F, Weiner RI (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133(3):1292–1299PubMedGoogle Scholar
  7. 7.
    D’Angelo G, Struman I, Martial J, Weiner RI (1995) Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Nat Acad Sci U S A 92(14):6374–6378CrossRefGoogle Scholar
  8. 8.
    D’Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI (1999) 16 K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol 13(5):692–704CrossRefPubMedGoogle Scholar
  9. 9.
    Galfione M, Luo W, Kim J, Hawke D, Kobayashi R, Clapp C, Yu-Lee LY, Lin SH (2003) Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr Purif 28(2):252–258CrossRefPubMedGoogle Scholar
  10. 10.
    Garcia C, Aranda J, Arnold E, Thebault S, Macotela Y, Lopez-Casillas F, Mendoza V, Quiroz-Mercado H, Hernandez-Montiel HL, Lin SH, de la Escalera GM, Clapp C (2008) Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2 A-dependent eNOS inactivation. J Clin Invest 118(6):2291–2300PubMedCentralPubMedGoogle Scholar
  11. 11.
    Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, Martial JA, Struman I (2003) The antiangiogenic factor 16 K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol 17(9):1815–1823CrossRefPubMedGoogle Scholar
  12. 12.
    Pan H, Nguyen NQ, Yoshida H, Bentzien F, Shaw LC, Rentier-Delrue F, Martial JA, Weiner R, Struman I, Grant MB (2004) Molecular targeting of antiangiogenic factor 16 K hPRL inhibits oxygen-induced retinopathy in mice. Investig Ophthalmol Visual Sci 45(7):2413–2419CrossRefGoogle Scholar
  13. 13.
    Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQ, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler H (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128(3):589–600CrossRefPubMedGoogle Scholar
  14. 14.
    Faupel-Badger JM, Ginsburg E, Fleming JM, Susser L, Doucet T, Vonderhaar BK (2010) 16 kDa prolactin reduces angiogenesis, but not growth of human breast cancer tumors in vivo. Horm Cancer 1(2):71–79CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Baldocchi RA, Tan L, King DS, Nicoll CS (1993) Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: evidence that the cleaving enzyme is cathepsin D. Endocrinology 133(2):935–938.PubMedGoogle Scholar
  16. 16.
    Ishida M, Maehara M, Watanabe T, Yanagisawa Y, Takata Y, Nakajima R, Suzuki M, Harigaya T (2014) Vasoinhibins, N-terminal mouse prolactin fragments, participate in mammary gland involution. J Mol EndocrinolGoogle Scholar
  17. 17.
    Erdmann S, Ricken A, Merkwitz C, Struman I, Castino R, Hummitzsch K, Gaunitz F, Isidoro C, Martial J, Spanel-Borowski K (2007) The expression of prolactin and its cathepsin D-mediated cleavage in the bovine corpus luteum vary with the estrous cycle. Am J Physiol Endocrinol Metab 293(5):E1365–E1377Google Scholar
  18. 18.
    Lee J, Majumder S, Chatterjee S, Muralidhar K (2011) Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis. J Biosci 36(2):341–354CrossRefPubMedGoogle Scholar
  19. 19.
    Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA, Goffin V (2004) Cathepsin D processes human prolactin into multiple 16 K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocr 18(10):2522–2542CrossRefGoogle Scholar
  20. 20.
    Macotela Y, Aguilar MB, Guzman-Morales J, Rivera JC, Zermeno C, Lopez-Barrera F, Nava G, Lavalle C, Martinez de la Escalera G, Clapp C (2006) Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci 119(Pt 9):1790–1800CrossRefPubMedGoogle Scholar
  21. 21.
    Ge G, Fernandez CA, Moses MA, Greenspan DS (2007) Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Nat Acad Sci U S A 104 (24):10010–10015CrossRefGoogle Scholar
  22. 22.
    Clapp C, Aranda J, Gonzalez C, Jeziorski MC, Martinez de la Escalera G (2006) Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocr Metab TEM 17(8):301–307CrossRefGoogle Scholar
  23. 23.
    Cruz-Soto ME, Cosio G, Jeziorski MC, Vargas-Barroso V, Aguilar MB, Carabez A, Berger P, Saftig P, Arnold E, Thebault S, Martinez de la Escalera G, Clapp C (2009) Cathepsin D is the primary protease for the generation of adenohypophyseal vasoinhibins: cleavage occurs within the prolactin secretory granules. Endocrinology 150(12):5446–5454CrossRefPubMedGoogle Scholar
  24. 24.
    Rochefort H, Chalbos D, Cunat S, Lucas A, Platet N, Garcia M (2001) Estrogen regulated proteases and antiproteases in ovarian and breast cancer cells. J Steroid Biochem Mol Biol 76(1–5):119–124CrossRefPubMedGoogle Scholar
  25. 25.
    Ferraris J, Radl DB, Zarate S, Jaita G, Eijo G, Zaldivar V, Clapp C, Seilicovich A, Pisera D (2011) N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary. PloS ONE 6(7):e21806CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Cosio G, Jeziorski MC, Lopez-Barrera F, De La Escalera GM, Clapp C (2003) Hypoxia inhibits expression of prolactin and secretion of cathepsin-D by the GH4C1 pituitary adenoma cell line. Lab Invest 83(11):1627–1636CrossRefPubMedGoogle Scholar
  27. 27.
    O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274(41):29568–29571CrossRefPubMedGoogle Scholar
  28. 28.
    Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, Greenspan DS, Iozzo RV (2005) BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 280(8):7080–7087CrossRefPubMedGoogle Scholar
  29. 29.
    Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202CrossRefPubMedGoogle Scholar
  31. 31.
    Clapp C, Torner L, Gutierrez-Ospina G, Alcantara E, Lopez-Gomez FJ, Nagano M, Kelly PA, Mejia S, Morales MA, Martinez de la Escalera G (1994) The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is processed into a 14-kDa fragment with activity like 16-kDa prolactin. Proc Nat Acad Sci U S A 91(22):10384–10388CrossRefGoogle Scholar
  32. 32.
    Zamorano M, Ledesma-Colunga M, Adán N, Vera-Massieu C, Lemini M, Méndez I, Moreno-Carranza B, Neumann I, Thebault S, Martínez de la Escalera G, Torner L, Clapp C (2014) Vasoinhibin increases anxiety- and depression-related behaviors. Psychoneuroendocrinology Accepted (PNEC-D-13-00742). doi:10.1016/j.psyneuen.2014.03.006Google Scholar
  33. 33.
    Aranda J, Rivera JC, Jeziorski MC, Riesgo-Escovar J, Nava G, Lopez-Barrera F, Quiroz-Mercado H, Berger P, Martinez de la Escalera G, Clapp C (2005) Prolactins are natural inhibitors of angiogenesis in the retina. Invest Ophthalmol Visual Sci 46(8):2947–2953CrossRefGoogle Scholar
  34. 34.
    Triebel J, Huefner M, Ramadori G (2009) Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy. Eur J Endocrinol/Eur Federation End Soc 161(2):345–353CrossRefGoogle Scholar
  35. 35.
    Gonzalez C, Parra A, Ramirez-Peredo J, Garcia C, Rivera JC, Macotela Y, Aranda J, Lemini M, Arias J, Ibarguengoitia F, de la Escalera GM, Clapp C (2007) Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Invest 87(10):1009–1017CrossRefPubMedGoogle Scholar
  36. 36.
    Clapp C, Thebault S, Martinez de la Escalera G (2008) Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia 13(1):55–67CrossRefPubMedGoogle Scholar
  37. 37.
    Johansson M, Olerud J, Jansson L, Carlsson PO (2009) Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology 150(4):1646–1653CrossRefPubMedGoogle Scholar
  38. 38.
    Moreno-Carranza B, Goya-Arce M, Vega C, Adan N, Triebel J, Lopez-Barrera F, Quintanar-Stephano A, Binart N, Martinez de la Escalera G, Clapp C (2013) Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis. Am J Physiol Regul Integr Comp Physiol 305(7):R720–R726CrossRefPubMedGoogle Scholar
  39. 39.
    Olazabal IM, Munoz JA, Rodriguez-Navas C, Alvarez L, Delgado-Baeza E, Garcia-Ruiz JP (2009) Prolactin’s role in the early stages of liver regeneration in rats. J Cell Physiol 219(3):626–633CrossRefPubMedGoogle Scholar
  40. 40.
    Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thusen JH, Twickler MT, Spek CA, Goffin V, Griffioen AW, Borensztajn KS (2012) Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 16(9):2035–2048CrossRefPubMedGoogle Scholar
  41. 41.
    Yang X, Meyer K, Friedl A (2013) STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 288(29):21184–21196CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Rosas-Hernandez H, Cuevas E, Lantz SM, Hamilton WR, Ramirez-Lee MA, Ali SF, Gonzalez C (2013) Prolactin and blood-brain barrier permeability. Curr Neurovasc Res 10(4):278–286CrossRefPubMedGoogle Scholar
  43. 43.
    De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vascu Res 49(5):390–404CrossRefGoogle Scholar
  44. 44.
    Castilla A, Garcia C, Cruz-Soto M, Martinez de la Escalera G, Thebault S, Clapp C (2010) Prolactin in ovarian follicular fluid stimulates endothelial cell proliferation. J Vasc Res 47(1):45–53CrossRefPubMedGoogle Scholar
  45. 45.
    Yang X, Qiao D, Meyer K, Friedl A (2009) Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res 69(4):1668–1677CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123(5):2143–2154CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Thebault S, González C, García C, Arredondo Zamarripa D, Nava G, Vaca L, López-Casillas F, Martínez de la Escalera G, Clapp C (2011) Vasoinhibins prevent bradykinin-stimulated endothelial cell proliferation by inactivating eNOS via reduction of both intracellular Ca2+ levels and eNOS phosphorylation at Ser1179. Pharmaceuticals 4:1052–1069CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Garcia C, Nunez-Anita RE, Thebault S, Arredondo Zamarripa D, Jeziorsky MC, Martínez de la Escalera G, Clapp C (2014) Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro. Endocrine 45(2):263–270CrossRefPubMedGoogle Scholar
  49. 49.
    Nguyen NQ, Castermans K, Berndt S, Herkenne S, Tabruyn SP, Blacher S, Lion M, Noel A, Martial JA, Struman I (2011) The antiangiogenic 16 K prolactin impairs functional tumor neovascularization by inhibiting vessel maturation. PloS ONE 6(11):e27318CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, Malvaux L, Griffioen AW, Martial JA, Struman I (2007) The angiostatic 16 K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 21(6):1422–1429CrossRefPubMedGoogle Scholar
  51. 51.
    Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O (2007) Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 178(3):1505–1511CrossRefPubMedGoogle Scholar
  52. 52.
    Clapp C, Weiner RI (1992) A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130(3):1380–1386PubMedGoogle Scholar
  53. 53.
    Shi H, Huang Y, Zhou H, Song X, Yuan S, Fu Y, Luo Y (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906CrossRefPubMedGoogle Scholar
  54. 54.
    Takada Y (2012) Potential role of kringle-integrin interaction in plasmin and uPA actions (a hypothesis). J Biomed Biotechnol 2012:136302. doi:136310.131155/132012/136302CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Clapp C, Thebault S, Arnold E, Garcia C, Rivera JC, de la Escalera GM (2008) Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab 295(4):E772–E778CrossRefPubMedGoogle Scholar
  56. 56.
    Hilfiker-Kleiner D, Sliwa K (2014) Pathophysiology and epidemiology of peripartum cardiomyopathy. Nat Rev Cardiol. doi:10.1038/nrcardio.2014.37Google Scholar
  57. 57.
    Clapp C, Martinez de la Escalera L, Martinez de la Escalera G (2012) Prolactin and blood vessels: a comparative endocrinology perspective. Gen Comp Endocrinol 176(3):336–340CrossRefPubMedGoogle Scholar
  58. 58.
    Andres AC, Djonov V (2010) The mammary gland vasculature revisited. J Mammary Gland Biol Neoplasia 15(3):319–328CrossRefPubMedGoogle Scholar
  59. 59.
    Zaragoza R, Torres L, Garcia C, Eroles P, Corrales F, Bosch A, Lluch A, Garcia-Trevijano ER, Vina JR (2009) Nitration of cathepsin D enhances its proteolytic activity during mammary gland remodelling after lactation. Biochem J 419(2):279–288CrossRefPubMedGoogle Scholar
  60. 60.
    Castino R, Delpal S, Bouguyon E, Demoz M, Isidoro C, Ollivier-Bousquet M (2008) Prolactin promotes the secretion of active cathepsin D at the basal side of rat mammary acini. Endocrinology 149(8):4095–4105CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Baldocchi RA, Tan L, Hom YK, Nicoll CS (1995) Comparison of the ability of normal mouse mammary tissues and mammary adenocarcinoma to cleave rat prolactin. Proc Soc Exp Biol Med 208(3):283–287CrossRefPubMedGoogle Scholar
  62. 62.
    Gill S, Peston D, Vonderhaar BK, Shousha S (2001) Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol 54(12):956–960CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Le JA, Wilson HM, Shehu A, Mao J, Devi YS, Halperin J, Aguilar T, Seibold A, Maizels E, Gibori G (2012) Generation of mice expressing only the long form of the prolactin receptor reveals that both isoforms of the receptor are required for normal ovarian function. Biol Reprod 86(3):86CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Ricken AM, Traenkner A, Merkwitz C, Hummitzsch K, Grosche J, Spanel-Borowski K (2007) The short prolactin receptor predominates in endothelial cells of micro- and macrovascular origin. J Vasc Res 44(1):19–30CrossRefPubMedGoogle Scholar
  65. 65.
    Arnold E, Rivera JC, Thebault S, Moreno-Paramo D, Quiroz-Mercado H, Quintanar-Stephano A, Binart N, Martinez de la Escalera G, Clapp C (2010) High levels of serum prolactin protect against diabetic retinopathy by increasing ocular vasoinhibins. Diabetes 59(12):3192–3197CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Ramirez M, Wu Z, Moreno-Carranza B, Jeziorski MC, Arnold E, Diaz-Lezama N, Martinez de la Escalera G, Colosi P, Clapp C (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF- and diabetes-induced retinal vasopermeability. Invest Ophthalmol Visual Sci 52(12):8944–8950CrossRefGoogle Scholar
  67. 67.
    Haghikia A, Podewski E, Libhaber E, Labidi S, Fischer D, Roentgen P, Tsikas D, Jordan J, Lichtinghagen R, von Kaisenberg CS, Struman I, Bovy N, Sliwa K, Bauersachs J, Hilfiker-Kleiner D (2013) Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res Cardiol 108(4):366CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Mukherjee S, Kar M, Dutta S (1991) Observation on serum prolactin in hepatic cirrhosis. J Indian Med Assoc 89(11):307–308PubMedGoogle Scholar
  69. 69.
    Buckley AR, Crowe PD, Bauman PA, Neumayer LA, Laird HE, 2nd, Russell DH, Putnam CW (1991) Prolactin-provoked alterations of cytosolic, membrane, and nuclear protein kinase C following partial hepatectomy. Dig Dis Sci 36(9):1313–1319CrossRefPubMedGoogle Scholar
  70. 70.
    Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29(6):301–307CrossRefPubMedGoogle Scholar
  71. 71.
    Dubois S, Madec AM, Mesnier A, Armanet M, Chikh K, Berney T, Thivolet C (2010) Glucose inhibits angiogenesis of isolated human pancreatic islets. J Mol Endocrinol 45(2):99–105CrossRefPubMedGoogle Scholar
  72. 72.
    Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, Liu J, Wang Y, Fu Y, Yang GY (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21(1):37–43CrossRefPubMedGoogle Scholar
  73. 73.
    Park KE, Pepine CJ (2010) Pathophysiologic mechanisms linking impaired cardiovascular health and neurologic dysfunction: the year in review. Clevel Clin J Med 77(Suppl 3):S40–S45CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carmen Clapp
    • 1
    Email author
  • Stéphanie Thebault
    • 1
  • Yazmín Macotela
    • 1
  • Bibiana Moreno-Carranza
    • 1
  • Jakob Triebel
    • 1
  • Gonzalo Martínez de la Escalera
    • 1
  1. 1.Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico

Personalised recommendations