A Positive Feedback Loop Between Prolactin and Stat5 Promotes Angiogenesis

  • Xinhai Yang
  • Andreas Friedl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 846)


The signal transduction events that orchestrate cellular activities required for angiogenesis remain incompletely understood. We and others recently described that proangiogenic mediators such as fibroblast growth factors can activate members of the signal transducers and activators of transcription (STAT) family. STAT5 activation is necessary and sufficient to induce migration, invasion and tube formation of endothelial cells. STAT5 effects on endothelial cells require the secretion of the prolactin (PRL) family member proliferin-1 (PLF1) in mice and PRL in humans. In human endothelial cells, PRL activates the PRL receptor (PRLR) resulting in MAPK and STAT5 activation, thus closing a positive feedback loop. In vivo, endothelial cell-derived PRL is expected to combine with PRL of tumor cell and pituitary origin to raise the concentration of this polypeptide hormone in the tumor microenvironment. Thus, PRL may stimulate tumor angiogenesis via autocrine, paracrine, and endocrine pathways. The disruption of tumor angiogenesis by interfering with PRL signaling may offer an attractive target for therapeutic intervention.


Proliferin Prolactin STAT5 Angiogenesis Tumor microenvironment 


  1. 1.
    Le Querrec A, Duval D, Tobelem G (1993) Tumour angiogenesis. Baillieres Clin Haematol 6(3):711–730PubMedGoogle Scholar
  2. 2.
    Auerbach R et al (2003) Angiogenesis assays: a critical overview. Clin Chem 49(1):32–40PubMedGoogle Scholar
  3. 3.
    Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3(7):643–651PubMedGoogle Scholar
  4. 4.
    Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6(10):1102–1103PubMedGoogle Scholar
  5. 5.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936PubMedGoogle Scholar
  6. 6.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364PubMedGoogle Scholar
  7. 7.
    Vamesu S (2006) Angiogenesis and tumor grading in primary breast cancer patients: an analysis of 158 needle core biopsies. Rom J Morphol Embryol 47(3):251–257PubMedGoogle Scholar
  8. 8.
    Rong Y et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539PubMedGoogle Scholar
  9. 9.
    Bagavandoss P, Sage EH, Vernon RB (1998) Secreted protein, acidic and rich in cysteine (SPARC) and thrombospondin in the developing follicle and corpus luteum of the rat. J Histochem Cytochem 46(9):1043–1049PubMedGoogle Scholar
  10. 10.
    Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312(5):549–560PubMedGoogle Scholar
  11. 11.
    Deo DD et al (2002) Phosphorylation of STAT–3 in response to basic fibroblast growth factor occurs through a mechanism involving platelet-activating factor, JAK–2, and Src in human umbilical vein endothelial cells. Evidence for a dual kinase mechanism. J Biol Chem 277(24):21237–21245PubMedGoogle Scholar
  12. 12.
    Schaefer LK et al (2002) Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21(13):2058–2065PubMedGoogle Scholar
  13. 13.
    Reich NC, Liu L (2006) Tracking STAT nuclear traffic. Nat Rev Immunol 6(8):602–612PubMedGoogle Scholar
  14. 14.
    Yang X et al (2009) Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res 69(4):1668–1677PubMedCentralPubMedGoogle Scholar
  15. 15.
    Dudley AC et al (2005) A VEGF/JAK2/STAT5 axis may partially mediate endothelial cell tolerance to hypoxia. Biochem J 390(Pt 2):427–436PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bartoli M et al (2000) Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells. J Biol Chem 275(43):33189–33192PubMedGoogle Scholar
  17. 17.
    Yahata Y et al (2003) Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem 278(41):40026–40031PubMedGoogle Scholar
  18. 18.
    Wang H et al (2012) VEGF-mediated STAT3 activation inhibits retinal vascularization by down-regulating local erythropoietin expression. Am J Pathol 180(3):1243–1253PubMedCentralPubMedGoogle Scholar
  19. 19.
    Korpelainen EI et al (1999) Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18(1):1–8PubMedGoogle Scholar
  20. 20.
    Jackson D et al (1994) Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 266(5190):1581–1584PubMedGoogle Scholar
  21. 21.
    Toft DJ et al (2001) Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc Natl Acad Sci U S A 98(23):13055–13059PubMedCentralPubMedGoogle Scholar
  22. 22.
    Yang X et al (2012) Angiogenesis induced by signal transducer and activator of transcription 5 A (STAT5 A) is dependent on autocrine activity of proliferin. J Biol Chem 287(9):6490–6502PubMedCentralPubMedGoogle Scholar
  23. 23.
    Wilder EL, Linzer DI (1986) Expression of multiple proliferin genes in mouse cells. Mol Cell Biol 6(9):3283–3286PubMedCentralPubMedGoogle Scholar
  24. 24.
    Wiemers DO et al (2003) Migratory trophoblast cells express a newly identified member of the prolactin gene family. J Endocrinol 179(3):335–346PubMedGoogle Scholar
  25. 25.
    Clevenger CV (2003) Role of prolactin/prolactin receptor signaling in human breast cancer. Breast Dis 18:75–86PubMedGoogle Scholar
  26. 26.
    Yang X, Meyer K, Friedl A (2013) STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 288(29):21184–21196PubMedCentralPubMedGoogle Scholar
  27. 27.
    Castilla A et al (2010) Prolactin in ovarian follicular fluid stimulates endothelial cell proliferation. J Vasc Res 47(1):45–53PubMedGoogle Scholar
  28. 28.
    Reuwer AQ et al (2012) Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 16(9):2035–2048PubMedGoogle Scholar
  29. 29.
    Clevenger CV, Altmann SW, Prystowsky MB (1991) Requirement of nuclear prolactin for interleukin-2-stimulated proliferation of T lymphocytes. Science 253(5015):77–79PubMedGoogle Scholar
  30. 30.
    Reynolds C et al (1997) Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138(12):5555–5560PubMedGoogle Scholar
  31. 31.
    Rycyzyn MA, Clevenger CV (2002) The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci U S A 99(10):6790–6795PubMedCentralPubMedGoogle Scholar
  32. 32.
    Ben-Jonathan N, LaPensee CR, LaPensee EW (2008) What can we learn from rodents about prolactin in humans? Endocr Rev 29(1):1–41PubMedCentralPubMedGoogle Scholar
  33. 33.
    Bernichtein S, Touraine P, Goffin V (2010) New concepts in prolactin biology. J Endocrinol 206(1):1–11PubMedGoogle Scholar
  34. 34.
    Corbacho AM, Martinez De La Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173(2):219–238PubMedGoogle Scholar
  35. 35.
    Ben-Jonathan N (1996) Dopamine and prolactin—an imperfect duo in circadian rhythmicity. Endocrinology 137(9):3619–3620PubMedGoogle Scholar
  36. 36.
    Corbacho AM et al (2000) Human umbilical vein endothelial cells express multiple prolactin isoforms. J Endocrinol 166(1):53–62PubMedGoogle Scholar
  37. 37.
    Ochoa A et al (2001) Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 42(7):1639–1645PubMedGoogle Scholar
  38. 38.
    Clapp C et al (1998) Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. J Endocrinol 158(1):137–144PubMedGoogle Scholar
  39. 39.
    Clapp C, Weiner RI (1992) A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130(3):1380–1386PubMedGoogle Scholar
  40. 40.
    Merkle CJ et al (2000) Structural and functional effects of high prolactin levels on injured endothelial cells: evidence for an endothelial prolactin receptor. Endocrine 13(1):37–46PubMedGoogle Scholar
  41. 41.
    Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22(6):724–763PubMedGoogle Scholar
  42. 42.
    Wieck A, Haddad P (2002) Hyperprolactinaemia caused by antipsychotic drugs. BMJ 324(7332):250–252PubMedCentralPubMedGoogle Scholar
  43. 43.
    Gerlo S et al (2006) Multiple cAMP-induced signaling cascades regulate prolactin expression in T cells. Cell Mol Life Sci 63(1):92–99PubMedCentralPubMedGoogle Scholar
  44. 44.
    Linzer DI, Nathans D (1984) Nucleotide sequence of a growth-related mRNA encoding a member of the prolactin-growth hormone family. Proc Natl Acad Sci U S A 81(14):4255–4259PubMedCentralPubMedGoogle Scholar
  45. 45.
    Linzer DI et al (1985) Identification of proliferin mRNA and protein in mouse placenta. Proc Natl Acad Sci U S A 82(13):4356–4359PubMedCentralPubMedGoogle Scholar
  46. 46.
    Hemberger M et al (2003) Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion. Dev Dyn 227(2):185–191PubMedGoogle Scholar
  47. 47.
    Nelson JT, Rosenzweig N, Nilsen-Hamilton M (1995) Characterization of the mitogen-regulated protein (proliferin) receptor. Endocrinology 136(1):283–288PubMedGoogle Scholar
  48. 48.
    Volpert O et al (1996) The insulin-like growth factor II/mannose 6-phosphate receptor is required for proliferin-induced angiogenesis. Endocrinology 137(9):3871–3876PubMedGoogle Scholar
  49. 49.
    Clapp C et al (2006) Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol Metab 17(8):301–307PubMedGoogle Scholar
  50. 50.
    Groskopf JC et al (1997) Proliferin induces endothelial cell chemotaxis through a G protein-coupled, mitogen-activated protein kinase-dependent pathway. Endocrinology 138(7):2835–2840PubMedGoogle Scholar
  51. 51.
    Struman I et al (1999) Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci U S A 96(4):1246–1251PubMedCentralPubMedGoogle Scholar
  52. 52.
    Turner HE et al (2000) Angiogenesis in pituitary adenomas—relationship to endocrine function, treatment and outcome. J Endocrinol 165(2):475–481PubMedGoogle Scholar
  53. 53.
    Malaguarnera L et al (2002) Significance of heme oxygenase in prolactin-mediated cell proliferation and angiogenesis in human endothelial cells. Int J Mol Med 10(4):433–440PubMedGoogle Scholar
  54. 54.
    Ko JY, Ahn YL, Cho BN (2003) Angiogenesis and white blood cell proliferation induced in mice by injection of a prolactin-expressing plasmid into muscle. Mol Cells 15(2):262–270PubMedGoogle Scholar
  55. 55.
    de la Torre NG, Turner HE, Wass JA (2005) Angiogenesis in prolactinomas: regulation and relationship with tumour behaviour. Pituitary 8(1):17–23Google Scholar
  56. 56.
    Clapp C, Martinez de la Escalera L, Martinez de la Escalera G (2012) Prolactin and blood vessels: a comparative endocrinology perspective. Gen Comp Endocrinol 176(3):336–340PubMedGoogle Scholar
  57. 57.
    Clapp C et al (1994) The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is processed into a 14-kDa fragment with activity like 16-kDa prolactin. Proc Natl Acad Sci U S A 91(22):10384–10388PubMedCentralPubMedGoogle Scholar
  58. 58.
    Johansson M et al (2009) Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology 150(4):1646–1653PubMedGoogle Scholar
  59. 59.
    Zemmoura I et al (2013) Aggressive and malignant prolactin pituitary tumors: pathological diagnosis and patient management. Pituitary 16(4):515–522PubMedGoogle Scholar
  60. 60.
    Ferrara N, Clapp C, Weiner R (1991) The 16 K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129(2):896–900PubMedGoogle Scholar
  61. 61.
    Lkhider M, Seddiki T, Ollivier-Bousquet M (2010) [Prolactin and its cleaved 16 kDa fragment]. Med Sci (Paris) 26(12):1049–1055Google Scholar
  62. 62.
    Duenas Z et al (1999) Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci 40(11):2498–2505PubMedGoogle Scholar
  63. 63.
    Ueda E et al (2006) A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr Relat Cancer 13(1):95–111PubMedGoogle Scholar
  64. 64.
    Schroeder MD et al (2003) Inhibition of prolactin (PRL)-induced proliferative signals in breast cancer cells by a molecular mimic of phosphorylated PRL, S179D-PRL. Endocrinology 144(12):5300–5307PubMedGoogle Scholar
  65. 65.
    D’Angelo G et al (1999) 16 K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol 13(5):692–704PubMedGoogle Scholar
  66. 66.
    Clapp C et al (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133(3):1292–1299PubMedGoogle Scholar
  67. 67.
    Faupel-Badger JM et al (2010) 16 kDa prolactin reduces angiogenesis, but not growth of human breast cancer tumors in vivo. Horm Cancer 1(2):71–79PubMedCentralPubMedGoogle Scholar
  68. 68.
    Piwnica D et al (2004) Cathepsin D processes human prolactin into multiple 16 K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocrinol 18(10):2522–2542PubMedGoogle Scholar
  69. 69.
    Ge G et al (2007) Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl Acad Sci U S A 104(24):10010–10015PubMedCentralPubMedGoogle Scholar
  70. 70.
    Nguyen NQ et al (2006) Prolactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis. Proc Natl Acad Sci U S A 103(39):14319–14324PubMedCentralPubMedGoogle Scholar
  71. 71.
    Schuler LA, Lu JC, Brockman JL (2001) Prolactin receptor heterogeneity: processing and signalling of the long and short isoforms during development. Biochem Soc Trans 29(Pt 2):52–56.PubMedGoogle Scholar
  72. 72.
    Brockman JL, Schroeder MD, Schuler LA (2002) PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol Endocrinol 16(4):774–784PubMedGoogle Scholar
  73. 73.
    Harris J et al (2004) Prolactin and the prolactin receptor: new targets of an old hormone. Ann Med 36(6):414–425PubMedGoogle Scholar
  74. 74.
    Brockman JL, Schuler LA (2005) Prolactin signals via Stat5 and Oct-1 to the proximal cyclin D1 promoter. Mol Cell Endocrinol 239(1–2):45–53PubMedCentralPubMedGoogle Scholar
  75. 75.
    Brooks CL (2012) Molecular mechanisms of prolactin and its receptor. Endocr Rev 33(4):504–525PubMedCentralPubMedGoogle Scholar
  76. 76.
    Wang Y, O’Neal KD, Yu-Lee L (1997) Multiple prolactin (PRL) receptor cytoplasmic residues and Stat1 mediate PRL signaling to the interferon regulatory factor-1 promoter. Mol Endocrinol 11(9):1353–1364PubMedGoogle Scholar
  77. 77.
    Hair WM et al (2002) Prolactin receptor expression in human testis and accessory tissues: localization and function. Mol Hum Reprod 8(7):606–611PubMedGoogle Scholar
  78. 78.
    Clevenger CV, Gadd SL, Zheng J (2009) New mechanisms for PRLr action in breast cancer. Trends Endocrinol Metab 20(5):223–229PubMedGoogle Scholar
  79. 79.
    Finidori J et al (1993) Different forms of growth hormone and prolactin receptors. Ann Endocrinol (Paris) 54(6):363–366Google Scholar
  80. 80.
    Goffin V et al (1999) From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. Genet Anal 15(3–5):189–201PubMedGoogle Scholar
  81. 81.
    Pezet A et al (1997) The last proline of Box 1 is essential for association with JAK2 and functional activation of the prolactin receptor. Mol Cell Endocrinol 129(2):199–208PubMedGoogle Scholar
  82. 82.
    Fresno Vara JA et al (2001) Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 12(7):2171–2183PubMedGoogle Scholar
  83. 83.
    Mangoura D et al (2000) Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 18(7):693–704PubMedGoogle Scholar
  84. 84.
    Dominguez-Caceres MA et al (2004) Prolactin induces c-Myc expression and cell survival through activation of Src/Akt pathway in lymphoid cells. Oncogene 23(44):7378–7390PubMedGoogle Scholar
  85. 85.
    Devi YS, Halperin J (2014) Reproductive actions of prolactin mediated through short and long receptor isoforms. Mol Cell Endocrinol 382(1):400–410PubMedGoogle Scholar
  86. 86.
    Tourkine N et al (1995) Activation of STAT factors by prolactin, interferon-gamma, growth hormones, and a tyrosine phosphatase inhibitor in rabbit primary mammary epithelial cells. J Biol Chem 270(36):20952–20961PubMedGoogle Scholar
  87. 87.
    DaSilva L et al (1996) Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580. Mol Cell Endocrinol 117(2):131–140PubMedGoogle Scholar
  88. 88.
    Vainchenker W, Constantinescu SN (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32(21):2601–2613PubMedGoogle Scholar
  89. 89.
    Quintas-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19(8):1933–1940PubMedGoogle Scholar
  90. 90.
    Bole-Feysot C et al (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19(3):225–268PubMedGoogle Scholar
  91. 91.
    Han Y et al (1997) JAK2 and STAT5, but not JAK1 and STAT1, are required for prolactin-induced beta-lactoglobulin transcription. Mol Endocrinol 11(8):1180–1188PubMedGoogle Scholar
  92. 92.
    Neilson LM et al (2007) Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer: recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways. Mol Endocrinol 21(9):2218–2232PubMedGoogle Scholar
  93. 93.
    Lebrun JJ et al (1994) Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem 269(19):14021–14026PubMedGoogle Scholar
  94. 94.
    DaSilva L et al (1994) Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J Biol Chem 269(28):18267–18270PubMedGoogle Scholar
  95. 95.
    Chang WP, Clevenger CV (1996) Modulation of growth factor receptor function by isoform heterodimerization. Proc Natl Acad Sci U S A 93(12):5947–5952PubMedCentralPubMedGoogle Scholar
  96. 96.
    Clevenger CV, Kline JB (2001) Prolactin receptor signal transduction. Lupus 10(10):706–718PubMedGoogle Scholar
  97. 97.
    Chilton BS, Hewetson A (2005) Prolactin and growth hormone signaling. Curr Top Dev Biol 68:1–23.PubMedGoogle Scholar
  98. 98.
    Heim MH (1999) The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 19(1–4):75–120PubMedGoogle Scholar
  99. 99.
    Kisseleva T et al (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285(1–2):1–24PubMedGoogle Scholar
  100. 100.
    Ihle JN et al (1997) Jaks and Stats in cytokine signaling. Stem Cells 15 (Suppl 1):105–111PubMedGoogle Scholar
  101. 101.
    Gouilleux F et al (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. Embo J 13(18):4361–4369PubMedCentralPubMedGoogle Scholar
  102. 102.
    Gartsbein M et al. (2006) The role of protein kinase C delta activation and STAT3 Ser727 phosphorylation in insulin-induced keratinocyte proliferation. J Cell Sci 119(Pt 3):470–481PubMedGoogle Scholar
  103. 103.
    Pircher TJ et al (1999) Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a. Mol Endocrinol 13(4):555–565PubMedGoogle Scholar
  104. 104.
    McCubrey JA et al (2000) Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14(1):9–21PubMedGoogle Scholar
  105. 105.
    Berger A et al (2014) PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia 28(3):629–641PubMedCentralPubMedGoogle Scholar
  106. 106.
    Beadling C et al (1996) Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway. Embo J 15(8):1902–1913PubMedCentralPubMedGoogle Scholar
  107. 107.
    Haq R et al (2002) Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J Biol Chem 277(19):17359–17366PubMedGoogle Scholar
  108. 108.
    Clevenger CV et al (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24(1):1–27PubMedCentralPubMedGoogle Scholar
  109. 109.
    Ormandy CJ et al (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11(2):167–178PubMedGoogle Scholar
  110. 110.
    Bratthauer GL, Stamatakos MD, Vinh TN (2010) Cells with minimal expression of the JAK/STAT pathway related proteins STAT5a and the prolactin receptor: evidence of an alternate prolactin receptor isoform in breast disease. Protein Pept Lett 17(1):104–108PubMedGoogle Scholar
  111. 111.
    Goffin V et al (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67PubMedGoogle Scholar
  112. 112.
    Ingram DM, Nottage EM, Roberts AN (1990) Prolactin and breast cancer risk. Med J Aust 153(8):469–473PubMedGoogle Scholar
  113. 113.
    Liby K et al (2003) Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth. Breast Cancer Res Treat 79(2):241–252PubMedGoogle Scholar
  114. 114.
    Beck MT, Peirce SK, Chen WY (2002) Regulation of bcl-2 gene expression in human breast cancer cells by prolactin and its antagonist, hPRL-G129R. Oncogene 21(33):5047–5055PubMedGoogle Scholar
  115. 115.
    Malarkey WB et al (1983) Physiological concentrations of prolactin can promote the growth of human breast tumor cells in culture. J Clin Endocrinol Metab 56(4):673–677PubMedGoogle Scholar
  116. 116.
    Biswas R, Vonderhaar BK (1987) Role of serum in the prolactin responsiveness of MCF-7 human breast cancer cells in long-term tissue culture. Cancer Res 47(13):3509–3514PubMedGoogle Scholar
  117. 117.
    Vonderhaar BK (1999) Prolactin involvement in breast cancer. Endocr Relat Cancer 6(3):389–404PubMedGoogle Scholar
  118. 118.
    Horseman ND, Gregerson KA (2013) Prolactin actions. J Mol Endocrinol 52(1):R95–R106PubMedGoogle Scholar
  119. 119.
    Harvey PW, Hypothesis (2012) prolactin is tumorigenic to human breast: dispelling the myth that prolactin-induced mammary tumors are rodent-specific. J Appl Toxicol 32(1):1–9PubMedGoogle Scholar
  120. 120.
    Tan D et al (2014) Expression of a constitutively active prolactin receptor causes histone trimethylation of the p53 gene in breast cancer. Chin Med J (Engl) 127(6):1077–1083Google Scholar
  121. 121.
    Bratthauer GL, Strauss BL, Tavassoli FA (2006) STAT 5a expression in various lesions of the breast. Virchows Arch 448(2):165–171PubMedGoogle Scholar
  122. 122.
    Walker SR et al (2009) Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res 7(6):966–976PubMedGoogle Scholar
  123. 123.
    Furth PA (2014) STAT signaling in different breast cancer sub-types. Mol Cell Endocrinol 382(1):612–615PubMedGoogle Scholar
  124. 124.
    Kroon P et al (2013) JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 73(16):5288–5298PubMedGoogle Scholar
  125. 125.
    Ehrmann J et al (2008) Expression of STATs and their inhibitors SOCS and PIAS in brain tumors. In vitro and in vivo study. Neoplasma 55(6):482–487PubMedGoogle Scholar
  126. 126.
    Tu Y et al (2011) Activation of JAK/STAT signal pathway predicts poor prognosis of patients with gliomas. Med Oncol 28(1):15–23PubMedGoogle Scholar
  127. 127.
    Televantou D et al (2013) DARPP32, STAT5 and STAT3 mRNA expression ratios in glioblastomas are associated with patient outcome. Pathol Oncol Res 19(2):329–343PubMedCentralPubMedGoogle Scholar
  128. 128.
    Clevenger CV et al (1995) Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 146(3):695–705PubMedCentralPubMedGoogle Scholar
  129. 129.
    Ginsburg E, Vonderhaar BK (1995) Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 55(12):2591–2595PubMedGoogle Scholar
  130. 130.
    Goffin V et al (2005) Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 26(3):400–422PubMedGoogle Scholar
  131. 131.
    Bernichtein S et al (2003) Development of pure prolactin receptor antagonists. J Biol Chem 278(38):35988–35999PubMedGoogle Scholar
  132. 132.
    Ferraris J et al (2013) Use of prolactin receptor antagonist to better understand prolactin regulation of pituitary homeostasis. Neuroendocrinology 98(3):171–179PubMedGoogle Scholar
  133. 133.
    Nelson EA et al (2011) The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 117(12):3421–3429PubMedCentralPubMedGoogle Scholar
  134. 134.
    Bar-Natan M et al (2012) Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells. Leukemia 26(6):1407–1410PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xinhai Yang
    • 1
  • Andreas Friedl
    • 1
    • 2
    • 3
  1. 1.Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonUSA
  2. 2.Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonUSA
  3. 3.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations