Prolactin-Induced Prostate Tumorigenesis

  • Lucila Sackmann-Sala
  • Vincent GoffinEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 846)


The physiological role of prolactin (PRL) in the prostate gland is not clearly understood. Genetically-modified mouse models that have invalidated actors of the PRL signaling axis failed to identify an essential regulatory function on this tissue. However, a large body of evidence suggests an important role for PRL in prostate tumorigenesis. Mainly through the activation of its downstream target STAT5, PRL can induce growth and survival of prostate cancer cells and tissues in several experimental settings. In the clinic, PRL expression and STAT5 activation in human prostate tumors correlate with disease severity. Available data point to a role of local (autocrine/paracrine) rather than circulating (endocrine) PRL in the induction of disease progression. In mice, transgenic expression of PRL in the prostate leads to enhanced epithelial hyperplasia and dysplasia, with amplification of basal/stem cells which have been recently identified as prostate cancer-initiating cells. Thus, targeting PRL receptor (PRLR)/STAT5 signaling may provide an alternative therapy for the treatment of prostate cancer. Corresponding targeted therapies currently in preclinical development include antagonists or blocking antibodies for the PRLR and small molecule inhibitors directed against the tyrosine kinase JAK2 upstream of STAT5. Present efforts are aimed at validating these therapies for the treatment of prostate cancer, while understanding the mechanisms of disease progression induced by PRL/STAT5.


Prostate Cancer Androgen Receptor Benign Prostate Hyperplasia Prostate Cancer Cell Line Prostate Cancer Progression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Jacques-Emmanuel Guidotti for critical reading of this review and to Natascha Pigat for help in generating Fig. 10.1.


  1. 1.
    Ahonen TJ, Harkonen PL, Laine J, Rui H, Martikainen PM, Nevalainen MT (1999) Prolactin is a survival factor for androgen-deprived rat dorsal and lateral prostate epithelium in organ culture. Endocrinology 140:5412–5421PubMedGoogle Scholar
  2. 2.
    Ahonen TJ, Harkonen PL, Rui H, Nevalainen MT (2002) PRL signal transduction in the epithelial compartment of rat prostate maintained as long-term organ cultures in vitro. Endocrinology 143:228–238CrossRefPubMedGoogle Scholar
  3. 3.
    Ahonen TJ, Xie J, LeBaron MJ, Zhu J, Nurmi M, Alanen K, Rui H, Nevalainen MT (2003) Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem 278:27287–27292CrossRefPubMedGoogle Scholar
  4. 4.
    Arnetz BB, Lahnborg G, Eneroth P (1986) Age-related differences in the pituitary prolactin response to thyrotropin-releasing hormone. Life Sci 39:135–139CrossRefPubMedGoogle Scholar
  5. 5.
    Barron DA, Rowley DR (2012) The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer 19:R187–R204CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Berinder K, Akre O, Granath F, Hulting AL (2011) Cancer risk in hyperprolactinemia patients: a population-based cohort study. Eur J Endocrinol 165:209–215CrossRefPubMedGoogle Scholar
  7. 7.
    Bernichtein S, Kinet S, Jeay S, Madern M, Martial JA, Kelly PA, Goffin V (2001) S179D-hPRL, a pseudo-phosphorylated human prolactin analog, is an agonist and not an antagonist. Endocrinology 142:3950–3963CrossRefPubMedGoogle Scholar
  8. 8.
    Bernichtein S, Kayser C, Dillner K, Moulin S, Kopchick JJ, Martial JA, Norstedt G, Isaksson O, Kelly PA, Goffin V (2003) Development of pure prolactin receptor antagonists. J Biol Chem 278:35988–35999CrossRefPubMedGoogle Scholar
  9. 9.
    Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin and its receptor: actions, signal transduction pathways and phenotypes observed in prolactin receptor knockout mice. Endocr Rev 19:225–268CrossRefPubMedGoogle Scholar
  10. 10.
    Browne TJ, Hirsch MS, Brodsky G, Welch WR, Loda MF, Rubin MA (2004) Prospective evaluation of AMACR (P504S) and basal cell markers in the assessment of routine prostate needle biopsy specimens. Hum Pathol 35:1462–1468CrossRefPubMedGoogle Scholar
  11. 11.
    Choi N, Zhang B, Zhang L, Ittmann M, Xin L (2012) Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21:253–265CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Christensen HR, Murawsky MK, Horseman ND, Willson TA, Gregerson KA (2013) Completely humanizing prolactin rescues infertility in prolactin knockout mice and leads to human prolactin expression in extrapituitary mouse tissues. Endocrinology 154(12):4777–4789CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Colao A, Vitale G, Di Sarno A, Spiezia S, Guerra E, Ciccarelli A, Lombardi G (2004) Prolactin and prostate hypertrophy: a pilot observational, prospective, case-control study in men with prolactinoma. J Clin Endocrinol Metab 89:2770–2775CrossRefPubMedGoogle Scholar
  14. 14.
    Dagvadorj A, Collins S, Jomain JB, Abdulghani J, Karras J, Zellweger T, Li H, Nurmi M, Alanen K, Mirtti T, Visakorpi T, Bubendorf L, Goffin V, Nevalainen MT (2007) Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology 148:3089–3101CrossRefPubMedGoogle Scholar
  15. 15.
    Dagvadorj A, Kirken RA, Leiby B, Karras J, Nevalainen MT (2008) Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Cancer Res 14:1317–1324CrossRefPubMedGoogle Scholar
  16. 16.
    Damiano JS, Wasserman E (2013) Molecular pathways: blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin Cancer Res 19:1644–1650CrossRefPubMedGoogle Scholar
  17. 17.
    Damiano JS, Rendahl KG, Karim C, Embry MG, Ghoddusi M, Holash J, Fanidi A, Abrams TJ, Abraham JA (2013) Neutralization of prolactin receptor function by monoclonal antibody LFA102, a novel potential therapeutic for the treatment of breast cancer. Mol Cancer Ther 12:295–305CrossRefPubMedGoogle Scholar
  18. 18.
    Dillner K, Kindblom J, Flores-Morales A, Shao R, Tornell J, Norstedt G, Wennbo H (2003) Gene expression analysis of prostate hyperplasia in mice overexpressing the prolactin gene specifically in the prostate. Endocrinology 144:4955–4966CrossRefPubMedGoogle Scholar
  19. 19.
    Eaton NE, Reeves GK, Appleby PN, Key TJ (1999) Endogenous sex hormones and prostate cancer: a quantitative review of prospective studies. Br J Cancer 80:930–934CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11:229–242CrossRefPubMedGoogle Scholar
  21. 21.
    Franklin RB, Costello LC (1990) Prolactin directly stimulates citrate production and mitochondrial aspartate aminotransferase of prostate epithelial cells. Prostate 17:13–18CrossRefPubMedGoogle Scholar
  22. 22.
    Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ (1996) Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst 88:1118–1126CrossRefPubMedGoogle Scholar
  23. 23.
    Goffin V, Bernichtein S, Touraine P, Kelly PA (2005) Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 26:400–422CrossRefPubMedGoogle Scholar
  24. 24.
    Goffin V, Touraine P, Culler MD, Kelly PA (2006) Drug Insight: prolactin-receptor antagonists, a novel approach to treatment of unresolved systemic and local hyperprolactinemia? Nat Clin Pract Endocrinol Metab 2:571–581CrossRefPubMedGoogle Scholar
  25. 25.
    Goffin V, Hoang DT, Bogorad RL, Nevalainen MT (2011) Prolactin regulation of the prostate gland: a female player in a male game. Nat Rev Urol 8:597–607CrossRefPubMedGoogle Scholar
  26. 26.
    Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010a) Identification of a cell of origin for human prostate cancer. Science 329:568–571CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Goldstein AS, Stoyanova T, Witte ON (2010b) Primitive origins of prostate cancer: in vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol 4:385–396CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, Lisanti MP, Addya S, Fortina P, Dasgupta A, Hyslop T, Bubendorf L, Nevalainen MT (2010a) Transcription factor Stat3 stimulates metastatic behavior of human prostate cancer cells in vivo, whereas Stat5b has a preferential role in the promotion of prostate cancer cell viability and tumor growth. Am J Pathol 176:1959–1972CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Gu L, Vogiatzi P, Puhr M, Dagvadorj A, Lutz J, Ryder A, Addya S, Fortina P, Cooper C, Leiby B, Dasgupta A, Hyslop T, Bubendorf L, Alanen K, Mirtti T, Nevalainen MT (2010b) Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer 17:481–493CrossRefPubMedGoogle Scholar
  30. 30.
    Gu L, Zhu XH, Visakorpi T, Alanen K, Mirtti T, Edmonston TB, Nevalainen MT (2010c) Activating mutation (V617F) in the tyrosine kinase JAK2 is absent in locally-confined or castration-resistant prostate cancer. Anal Cell Pathol (Amst) 33:55–59CrossRefGoogle Scholar
  31. 31.
    Gu L, Liao Z, Hoang DT, Dagvadorj A, Gupta S, Blackmon S, Ellsworth E, Talati P, Leiby B, Zinda M, Lallas CD, Trabulsi EJ, McCue P, Gomella L, Huszar D, Nevalainen MT (2013) Pharmacologic inhibition of Jak2-Stat5 signaling By Jak2 inhibitor AZD1480 potently suppresses growth of both primary and castrate-resistant prostate cancer. Clin Cancer Res 19:5658–5674CrossRefPubMedGoogle Scholar
  32. 32.
    Gu L, Talati P, Vogiatzi P, Romero-Weaver AL, Abdulghani J, Liao Z, Leiby B, Hoang DT, Mirtti T, Alanen K, Zinda M, Huszar D, Nevalainen MT (2014) Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther 13:1246–58CrossRefPubMedGoogle Scholar
  33. 33.
    Haddad BR, Gu L, Mirtti T, Dagvadorj A, Vogiatzi P, Hoang DT, Bajaj R, Leiby B, Ellsworth E, Blackmon S, Ruiz C, Curtis M, Fortina P, Ertel A, Liu C, Rui H, Visakorpi T, Bubendorf L, Lallas CD, Trabulsi EJ, McCue P, Gomella L, Nevalainen MT (2013) STAT5A/B gene locus undergoes amplification during human prostate cancer progression. Am J Pathol 182:2264–2275CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Harper ME, Peeling WB, Cowley T, Brownsey BG, Phillips ME, Groom G, Fahmy DR, Griffiths K (1976) Plasma steroid and protein hormone concentrations in patients with prostatic carcinoma, before and during oestrogen therapy. Acta Endocrinol (Copenh) 81:409–426Google Scholar
  35. 35.
    Huang K, Ueda E, Chen Y, Walker AM (2008) Paradigm-shifters: phosphorylated prolactin and short prolactin receptors. J Mammary Gland Biol Neoplasia 13:69–79CrossRefPubMedGoogle Scholar
  36. 36.
    Janssen T, Darro F, Petein M, Raviv G, Pasteels JL, Kiss R, Schulman CC (1996) In vitro characterization of prolactin-induced effects on proliferation in the neoplastic LNCaP, DU145, and PC3 models of the human prostate. Cancer 77:144–149CrossRefPubMedGoogle Scholar
  37. 37.
    Kazansky AV, Spencer DM, Greenberg NM (2003) Activation of signal transducer and activator of transcription 5 is required for progression of autochthonous prostate cancer: evidence from the transgenic adenocarcinoma of the mouse prostate system. Cancer Res 63:8757–8762PubMedGoogle Scholar
  38. 38.
    Kindblom J, Dillner K, Ling C, Tornell J, Wennbo H (2002) Progressive prostate hyperplasia in adult prolactin transgenic mice is not dependent on elevated serum androgen levels. Prostate 53:24–33CrossRefPubMedGoogle Scholar
  39. 39.
    Kindblom J, Dillner K, Sahlin L, Robertson F, Ormandy C, Tornell J, Wennbo H (2003) Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology 144:2269–2278CrossRefPubMedGoogle Scholar
  40. 40.
    Koptyra M, Gupta S, Talati P, Nevalainen MT (2011) Signal transducer and activator of transcription 5a/b: biomarker and therapeutic target in prostate and breast cancer. Int J Biochem Cell Biol 43:1417–1421CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Kwon OJ, Zhang L, Ittmann MM, Xin L (2014) Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci U S A 111:E592–E600CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 107:2610–2615CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Leav I, Merk FB, Lee KF, Loda M, Mandoki M, McNeal JE, Ho SM (1999) Prolactin receptor expression in the developing human prostate and in hyperplastic, dysplastic, and neoplastic lesions. Am J Pathol 154:863–870CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Li H, Ahonen TJ, Alanen K, Xie J, LeBaron MJ, Pretlow TG, Ealley EL, Zhang Y, Nurmi M, Singh B, Martikainen PM, Nevalainen MT (2004) Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res 64:4774–4782CrossRefPubMedGoogle Scholar
  45. 45.
    Li HZ, Zhang Y, Glass A, Zellweger T, Gehan E, Bubendorf L, Gelmann EP, Nevalainen MT (2005) Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin Cancer Res 11:5863–5868CrossRefPubMedGoogle Scholar
  46. 46.
    Liao Z, Lutz J, Nevalainen MT (2010) Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer. Int J Biochem Cell Biol 42:186–192CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Liu Y, Costello LC, Franklin RB (1996) Prolactin specifically regulates citrate oxidation and m-aconitase of rat prostate epithelial cells. Metabolism 45:442–449CrossRefPubMedGoogle Scholar
  48. 48.
    Marano RJ,Ben Jonathan N (2014) Minireview: extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol Endocrinol 28(5):622–633. doi:me20131349CrossRefPubMedGoogle Scholar
  49. 49.
    Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, Di Marzo V (2000) Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141:118–126PubMedGoogle Scholar
  50. 50.
    Mirtti T, Leiby BE, Abdulghani J, Aaltonen E, Pavela M, Mamtani A, Alanen K, Egevad L, Granfors T, Josefsson A, Stattin P, Bergh A, Nevalainen MT (2012) Nuclear Stat5a/b predicts early recurrence and prostate cancer-specific death in patients treated by radical prostatectomy. Hum PatholGoogle Scholar
  51. 51.
    Molitch ME (2002) Medical management of prolactin-secreting pituitary adenomas. Pituitary 5:55–65CrossRefPubMedGoogle Scholar
  52. 52.
    Nadeau K, Hwa V, Rosenfeld RG (2011) STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J Pediatr 158:701–708CrossRefPubMedGoogle Scholar
  53. 53.
    Nevalainen MT, Valve EM, Makela SI, Blauer M, Tuohimaa PJ, Harkonen PL (1991) Estrogen and prolactin regulation of rat dorsal and lateral prostate in organ culture. Endocrinology 129:612–622CrossRefPubMedGoogle Scholar
  54. 54.
    Nevalainen MT, Valve EM, Ahonen T, Yagi A, Paranko J, Harkonen PL (1997a) Androgen-dependent expression of prolactin in rat prostate epithelium in vivo and in organ culture. FASEB J 11:1297–1307PubMedGoogle Scholar
  55. 55.
    Nevalainen MT, Valve EM, Ingleton PM, Nurmi M, Martikainen PM, Harkonen PL (1997b) Prolactin and prolactin receptors are expressed and functioning in human prostate. J Clin Invest 99:618–627CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Nevalainen MT, Ahonen TJ, Yamashita H, Chandrashekar V, Bartke A, Grimley PM, Robinson GW, Hennighausen L, Rui H (2000) Epithelial defect in prostates of Stat5a-null mice. Lab Invest 80:993–1006CrossRefPubMedGoogle Scholar
  57. 57.
    Newey PJ, Gorvin CM, Cleland SJ, Willberg CB, Bridge M, Azharuddin M, Drummond RS, van der Merwe PA, Klenerman P, Bountra C, Thakker RV (2013) Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 369:2012–2020CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC (2007) Cytokine receptor signaling through the JAK-STAT-SOCS pathway in disease. Mol Immunol 44:2497–2506CrossRefPubMedGoogle Scholar
  59. 59.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, Chodacki A, Wiechno P, Logue J, Seke M, Widmark A, Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall’Oglio M, Franzen L, Coleman R, Vogelzang NJ, O’Bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland OS, Sartor O (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223CrossRefPubMedGoogle Scholar
  60. 60.
    Peirce SK, Chen WY, Chen WY (2001) Quantification of prolactin receptor mRNA in multiple human tissues and cancer cell lines by real time RT-PCR. J Endocrinol 171:R1–R4CrossRefPubMedGoogle Scholar
  61. 61.
    Rannikko S, Adlercreutz H (1983) Plasma estradiol, free testosterone, sex hormone binding globulin binding capacity, and prolactin in benign prostatic hyperplasia and prostatic cancer. Prostate 4:223–229CrossRefPubMedGoogle Scholar
  62. 62.
    Robertson FG, Harris J, Naylor MJ, Oakes SR, Kindblom J, Dillner K, Wennbo H, Tornell J, Kelly PA, Green J, Ormandy CJ (2003) Prostate development and carcinogenesis in prolactin receptor knockout mice. Endocrinology 144:3196–3205CrossRefPubMedGoogle Scholar
  63. 63.
    Rouet V, Bogorad RL, Kayser C, Kessal K, Genestie C, Bardier A, Grattan DR, Kelder B, Kopchick JJ, Kelly PA, Goffin V (2010) Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc Natl Acad Sci U S A 107:15199–15204CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Ruffion A, Al Sakkaf KA, Brown BL, Eaton CL, Hamdy FC, Dobson PR (2003) The survival effect of prolactin on PC3 prostate cancer cells. Eur Urol 43:301–308CrossRefPubMedGoogle Scholar
  65. 65.
    Rui H, Utama F E., Yanac A F., Xia G, Peck A R., Liu C, Rosenberg AL, Wagner KU, Yang N (2012) Prolactin-humanized mice: an improved animal recipient for therapy response-testing of patient-derived breast cancer xenotransplants. Cancer Res 72(24, Suppl 3):S1–8Google Scholar
  66. 66.
    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S, Carles J, Mulders PF, Basch E, Small EJ, Saad F, Schrijvers D, Van Poppel H, Mukherjee SD, Suttmann H, Gerritsen WR, Flaig TW, George DJ, Yu EY, Efstathiou E, Pantuck A, Winquist E, Higano CS, Taplin ME, Park Y, Kheoh T, Griffin T, Scher HI, Rathkopf DE (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368:138–148CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Sanati S, Watson MA, Salavaggione AL, Humphrey PA (2009) Gene expression profiles of ductal versus acinar adenocarcinoma of the prostate. Mod Pathol 22:1273–1279CrossRefPubMedGoogle Scholar
  68. 68.
    Saroff J, Kirdani RY, Chu TM, Wajsman Z, Murphy GP (1980) Measurements of prolactin and androgens in patients with prostatic diseases. Oncology 37:46–52CrossRefPubMedGoogle Scholar
  69. 69.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig TW, Flechon A, Mainwaring P, Fleming M, Hainsworth JD, Hirmand M, Selby B, Seely L, de Bono JS (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197CrossRefPubMedGoogle Scholar
  70. 70.
    Slager SL, Zarfas KE, Brown WM, Lange EM, McDonnell SK, Wojno KJ, Cooney KA (2006) Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the University of Michigan Prostate Cancer Genetics Project. Prostate 66:173–179CrossRefPubMedGoogle Scholar
  71. 71.
    Stattin P, Rinaldi S, Stenman UH, Riboli E, Hallmans G, Bergh A, Kaaks R (2001) Plasma prolactin and prostate cancer risk: a prospective study. Int J Cancer 92:463–465CrossRefPubMedGoogle Scholar
  72. 72.
    Steger RW, Chandrashekar V, Zhao W, Bartke A, Horseman ND (1998) Neuroendocrine and reproductive functions in male mice with targeted disruption of the prolactin gene. Endocrinology 139:3691–3695PubMedGoogle Scholar
  73. 73.
    Syms AJ, Harper ME, Griffiths K (1985) The effect of prolactin on human BPH epithelial cell proliferation. Prostate 6:145–153CrossRefPubMedGoogle Scholar
  74. 74.
    Tan SH, Dagvadorj A, Shen F, Gu L, Liao Z, Abdulghani J, Zhang Y, Gelmann EP, Zellweger T, Culig Z, Visakorpi T, Bubendorf L, Kirken RA, Karras J, Nevalainen MT (2008) Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res 68:236–248CrossRefPubMedGoogle Scholar
  75. 75.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Thomas LN, Morehouse TJ, Too CK (2012) Testosterone and prolactin increase carboxypeptidase-D and nitric oxide levels to promote survival of prostate cancer cells. Prostate 72:450–460CrossRefPubMedGoogle Scholar
  77. 77.
    Thomas LN, Merrimen J, Bell DG, Rendon R, Goffin V, Too CK (2014) Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting. Prostate 74:732–742CrossRefPubMedGoogle Scholar
  78. 78.
    Utama FE, LeBaron MJ, Neilson LM, Sultan AS, Parlow AF, Wagner KU, Rui H (2006) Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. J Endocrinol 188:589–601CrossRefPubMedGoogle Scholar
  79. 79.
    Utama FE, Tran TH, Ryder A, LeBaron MJ, Parlow AF, Rui H (2009) Insensitivity of human prolactin receptors to nonhuman prolactins: relevance for experimental modeling of prolactin receptor-expressing human cells. Endocrinology 150:1782–1790CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Valkenburg KC, Williams BO (2011) Mouse models of prostate cancer. Prostate Cancer 2011:895238CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Van Coppenolle F, Slomianny C, Carpentier F, Le B, X, Ahidouch A, Croix D, Legrand G, Dewailly E, Fournier S, Cousse H, Authie D, Raynaud JP, Beauvillain JC, Dupouy JP, Prevarskaya N (2001) Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am J Physiol Endocrinol Metab 280:E120–E129PubMedGoogle Scholar
  82. 82.
    Vekemans M, Robyn C (1975) Influence of age on serum prolactin levels in women and men. Br Med J 4:738–739CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, Catalano JV, Deininger M, Miller C, Silver RT, Talpaz M, Winton EF, Harvey JH Jr, Arcasoy MO, Hexner E, Lyons RM, Paquette R, Raza A, Vaddi K, Erickson-Viitanen S, Koumenis IL, Sun W, Sandor V, Kantarjian HM (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366:799–807CrossRefPubMedGoogle Scholar
  84. 84.
    Webb SM, Casanueva F, Wass JA (2002) Oncological complications of excess GH in acromegaly. Pituitary 5:21–25CrossRefPubMedGoogle Scholar
  85. 85.
    Wennbo H, Gebre-Medhin M, Gritli-Linde A, Ohlsson C, Isaksson OG, Tornell J (1997a) Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J Clin Invest 100:2744–2751CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Wennbo H, Kindblom J, Isaksson OG, Tornell J (1997b) Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology 138:4410–4415PubMedGoogle Scholar
  87. 87.
    Wu W, Coss D, Lorenson MY, Kuo CB, Xu X, Walker AM (2003) Different biological effects of unmodified prolactin and a molecular mimic of phosphorylated prolactin involve different signaling pathways. Biochemistry 42:7561–7570CrossRefPubMedGoogle Scholar
  88. 88.
    Xu X, Kreye E, Kuo CB, Walker AM (2001) A molecular mimic of phosphorylated prolactin markedly reduced tumor incidence and size when du145 human prostate cancer cells were grown in nude mice. Cancer Res 61:6098–6104PubMedGoogle Scholar
  89. 89.
    Yap TA, Zivi A, Omlin A, de Bono JS (2011) The changing therapeutic landscape of castration-resistant prostate cancer. Nat Rev Clin Oncol 8:597–610CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Inserm U1151, Institut Necker Enfants Malades, Faculté de MédecineUniversité Paris Descartes, Sorbonne Paris CitéParisFrance

Personalised recommendations