Skip to main content

Integration of Operational Data into Maintenance Planning

  • Chapter
  • First Online:
Through-life Engineering Services

Part of the book series: Decision Engineering ((DECENGIN))

Abstract

In machines a broad range of operational and failure information, like hours of operation, temperatures of components or information about surrounding conditions are available. However, this information is barely used for failure prediction or maintenance planning. At the same time, product life cycles shorten and machine variants increase, making estimation of replacement instances challenging. Stochastic models offer the opportunity of integrating operational and failure information and thereby utilize them for more accurate planning. Within this chapter, a literature overview about existing stochastic prognosis methods and an approach for cost minimal replacement are presented. Within that method data pre-processing, interpretation and utilizing takes place. It can be applied to any system exposed to mechanical wear. The novel planning approach is applied to wind energy turbine data and verified by comparison to established methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgenson DW, McCall JJ, Radner R (1967) Optimal replacement policy. North-Holland Publishing, Amsterdam

    Google Scholar 

  2. Ghordrati B (2005) Reliability and operational environment based spare parts planning. Lulea University of Technology, Lulea

    Google Scholar 

  3. Louit D, Rodrigo P, Banjevic D, Jardine AKS (2011) Condition-based spares ordering for critical components. Mech Syst Sig Process 25:1837–1848

    Article  Google Scholar 

  4. Vlok P-J (2001) Dynamic residual life estimation of industrial equipment based on failure intensity proportions. University of Pretoria, Pretoria

    Google Scholar 

  5. Dietrich E (2009) Statistische Verfahren zur Maschinen—und Prozessqualifikation: mit 61 Tabellen, 6., vollst. überarb. Aufl. Hanser, München [u.a.]

    Google Scholar 

  6. Strunz M (2012) Instandhaltung, Grundlagen-Strategien-Werkstätten. doi:10.1007/978-3-642-27390-2

  7. Abernethy RB (2006) The new Weibull handbook. Robert B. Abernethy Publishing, North Palm Beach

    Google Scholar 

  8. Epstein B, Sobel M (1954) Some theorems relevant to life testing from an exponential distribution. Ann Math Stat 25:373–381

    Article  MATH  MathSciNet  Google Scholar 

  9. Schenk M (2010) Instandhaltung technischer Systeme—Methoden und Werkzeuge zur Gewährleistung eines sicheren und wirtschaftlichen Anlagenbetriebs. Springer, Berlin

    Google Scholar 

  10. Rosin P, Rammler E (1933) The laws governing the fineness of powdered coal. Inst Fuel 7:29–36

    Google Scholar 

  11. Große G (1976) Instandhaltungsstrategien für einfache und komplexe Systeme mit Berücksichtigung periodischer Kontrollen. Ingenieurhochschule Zittau

    Google Scholar 

  12. Mazhar MI, Kara S, Kaebernick H (2007) Remaining life estimation of used components in consumer products: life cycle data analysis by Weibull and artificial neural networks. J Oper Manage 25:1184–1193. doi:10.1016/j.jom.2007.01.021

    Article  Google Scholar 

  13. Lanza G, Niggeschmidt S, Werner P (2009) Optimization of preventive maintenance and spare part provision for machine tools based on variable operational conditions. CIRP Ann Manuf Technol 58:429–432. doi:10.1016/j.cirp.2009.03.030

    Article  Google Scholar 

  14. Cox DR (1972) Regression models and life-tables. J Roy Stat Soc 34:187–220

    MATH  Google Scholar 

  15. Hastie T, Sleeper L, Tirshirani R (1992) Flexible covariate effects in the proportional hazards model. Breast Cancer Res Treat Issue 3(22):241–250

    Article  Google Scholar 

  16. zu Eulenburg CHG (2009) Überleben, Progredienz und Tod: Multistate-Modelle zur Analyse konkurrierender und nachzeititger Ereignisse. Universität Hamburg, Hamburg

    Google Scholar 

  17. Klein JP, Moeschberger ML (2010) Survival analysis: techniques for censored and truncated data, 2nd edn. Springer, New York (corr. 3. print)

    Google Scholar 

  18. Vlok PJ, Coetzee JL, Banjevic D, Jardine AKS, Makis V (2002) Optimal component replacement decisions using vibration monitoring and the proportional-hazards model. J Oper Res Soc 53:193–202

    Article  MATH  Google Scholar 

  19. Banjevic D, Jardine AKS (2006) Calculation of reliability function and remaining useful life for a Markov failure time process. J Manage Math 17:115–130

    MATH  MathSciNet  Google Scholar 

  20. Zhao X, Bordes L, Fouladirad M, Bèrenguer C (2010) Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates. Reliab Eng Sys Saf 95:921–934

    Article  Google Scholar 

  21. Kalman RE (1960) A new approach to linear filtering and prediction problems. ASME-J Basic Eng 83:35–45

    Article  Google Scholar 

  22. Wang W, Christer AH (2000) Towards a general condition based maintenance model for a stochastic dynamic system. J Oper Res Soc 51:145–155

    Article  MATH  Google Scholar 

  23. Gomes JPP, Leao BP, Vianna WOL et al (2012) Failure prognostics of a hydraulic pump using kalman filter. Ann Conf Prognostics Health Manage Soc 3:1–5

    Google Scholar 

  24. Wang W (2007) A prognosis model for wear prediction based on oil-based monitoring. J Oper Res Soc 58:887–893

    Article  MATH  Google Scholar 

  25. Baruah P, Chinnam RB (2005) HMMs for diagnostics and prognostics in machining processes. Int J Prod Res 43:1275–1293

    Article  MATH  Google Scholar 

  26. Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state markov chains. Ann Math Stat 37:1554–1563

    Article  MATH  MathSciNet  Google Scholar 

  27. Rigoll G, Schenk J (2010) Mensch-Maschine-Kommunikation. Springer, Berlin

    Google Scholar 

  28. Bunks C, Mc Carhy D, Al-Ani T (2000) Condition-based maintenance of machines using hidden markov models. Mech Syst Sig Process 14:597–612. doi:10.1006/mssp.2000.1309

    Article  Google Scholar 

  29. Zhou Z-J, Hu C-H, Xu D-L et al (2010) A model for real-time failure prognosis based on hidden Markov model and belief rule base. Eur J Oper Res 207:269–283. doi:10.1016/j.ejor.2010.03.032

    Article  MATH  MathSciNet  Google Scholar 

  30. Neves ML, Santiago LP, Maia CA (2011) A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection. Comput Ind Eng 61:503–511. doi:10.1016/j.cie.2011.04.005

    Article  Google Scholar 

  31. Tracht K, Goch G, Schuh P, Sorg M, Westerkamp JF (2013) Failure probability prediction based on condition monitoring data of wind energy systems for spare parts supply. CIRP Ann Manufact Technol 62:127–130. http://dx.doi.org/10.1016/j.cirp.2013.03.130

  32. Sachs J, Hedderich L (2009) Angewandte Statistik: Methodensammlung mit R, 13., aktualisierte und erweiterte Auflage. Springer, Dordrecht

    Google Scholar 

  33. Kumar DBK (1994) Proportional hazards model: a review. Reliab Eng Sys Saf 44:177–188

    Article  Google Scholar 

  34. Andy Field ZF, Miles J (2012) Discovering statistics using R. Sage, Thousand Oaks

    Google Scholar 

  35. Thall PF, Lachin JM (1986) Assessment of stratum-covariate interactions in cox’s proportional hazards regression model. Stat Med 5:73–83

    Article  Google Scholar 

  36. Kaplan EL, Meiers P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MATH  Google Scholar 

  37. Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  38. Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    Article  MATH  MathSciNet  Google Scholar 

  39. Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  40. Beichelt F (1970) Zuverlässigkeit und Erneuerung: die optimale Instandhaltung. Verlag Technik, Berlin

    Google Scholar 

Download references

Acknowledgments

The results presented were developed in the research project “Service logistics for wind turbines” funded by the German Federal Ministry of Economics and Technology (BMWI), Industrial Collective Research for SMEs (AiF), Bundesvereinigung Logistik e.V. (BVL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schuh, P., Perl, C., Tracht, K. (2015). Integration of Operational Data into Maintenance Planning. In: Redding, L., Roy, R. (eds) Through-life Engineering Services. Decision Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12111-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12111-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12110-9

  • Online ISBN: 978-3-319-12111-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics