Skip to main content

Knowledge Preemption and Defeasible Rules

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8793))

Abstract

Preemption is a reasoning mechanism that makes an incoming logically weaker piece of information prevail over pre-existing stronger knowledge. In this paper, recent results about preemption are extended to cover a family of knowledge representation formalisms that accommodate defeasible rules through reasoning on minimal models and abnormality propositions to represent exceptions. Interestingly, despite the increase of expressiveness and computational complexity of inference in this extended setting, reasonable working conditions allow the treatment of preemption in standard logic to be directly imported as such at no additional computing cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besnard, P., Grégoire, É., Ramon, S.: Enforcing logically weaker knowledge in classical logic. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS, vol. 7091, pp. 44–55. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Besnard, P., Grégoire, É., Ramon, S.: Preemption operators. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 893–894 (2012)

    Google Scholar 

  3. McCarthy, J.: Applications of circumscription to formalizing common-sense knowledge. Artificial Intelligence 28(1), 89–116 (1986)

    Article  MathSciNet  Google Scholar 

  4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)

    Google Scholar 

  5. Zhuang, Z.Q., Pagnucco, M., Meyer, T.: Implementing iterated belief change via prime implicates. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 507–518. Springer, Heidelberg (2007)

    Google Scholar 

  6. Bienvenu, M., Herzig, A., Qi, G.: Prime implicate-based belief revision operators. In: 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 741–742 (2008)

    Google Scholar 

  7. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research (JAIR) 17, 229–264 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional horn theories. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 197–211. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Cadoli, M., Schaerf, M.: A survey of complexity results for nonmonotonic logics. Journal of Logic Programming 17(2/3&4), 127–160 (1993)

    Google Scholar 

  10. Cadoli, M.: The complexity of model checking for circumscriptive formulae. Information Processing Letters 44(3), 113–118 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artificial Intelligence 57(2-3), 227–270 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Angiulli, F., Ben-Eliyahu-Zohary, R., Fassetti, F., Palopoli, L.: On the tractability of minimal model computation for some CNF theories. Artificial Intelligence 210, 56–77 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lifschitz, V.: Answer set planning (abstract). In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 373–374. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2), 39–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grégoire, É., Lagniez, J.M., Mazure, B.: An experimentally efficient method for (MSS,CoMSS) partitioning. In: Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014). AAAI Press (2014)

    Google Scholar 

  16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 (2013)

    Google Scholar 

  18. Ginsberg, M.: Readings in nonmonotonic reasoning. M. Kaufmann Publishers (1987)

    Google Scholar 

  19. Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief change. Journal of Philosophical Logic 40(2), 295–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grégoire, É., Konieczny, S.: Logic-based approaches to information fusion. Information Fusion 7(1), 4–18 (2006)

    Article  Google Scholar 

  21. Besnard, P., Grégoire, É.: Handling incoming beliefs. In: Wang, M. (ed.) KSEM 2013. LNCS, vol. 8041, pp. 206–217. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Besnard, P., Grégoire, É., Ramon, S.: Overriding subsuming rules. International Journal of Approximate Reasoning 54(4), 452–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Grégoire, É. (2014). Knowledge Preemption and Defeasible Rules. In: Buchmann, R., Kifor, C.V., Yu, J. (eds) Knowledge Science, Engineering and Management. KSEM 2014. Lecture Notes in Computer Science(), vol 8793. Springer, Cham. https://doi.org/10.1007/978-3-319-12096-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12096-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12095-9

  • Online ISBN: 978-3-319-12096-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics