Skip to main content

Bayes Optimality of Human Perception, Action and Learning: Behavioural and Neural Evidence

  • Conference paper
  • First Online:
  • 1094 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Abstract

The primary role of any biological nervous system (including the human) is to process incoming information in a way that allows motor choices to be made that increases the subjective utility of the organism. Or put slightly differently, “to make sure good things happen”. There are a number of ways that such a process can be done, but one possible hypothesis is that the human nervous system has been optimized to maximize the use of available resources, thus approximating optimal computations. In the following I will discuss the possibility of the nervous system performing such computations in perception, action and learning, and the behavioural and neural evidence supporting such ideas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains.html

References

  1. Alais, D., Burr, D.: The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14(3), 257–262 (2004)

    Article  Google Scholar 

  2. Allais, M.: Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’ecole americaine. Econometrica 21(4), 503–546 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, J.M., Ma, W.J., Kiani, R., Hanks, T., Churchland, A.K., Roitman, J., Shadlen, M.N., Latham, P.E., Pouget, A.: Probabilistic population codes for bayesian decision making. Neuron 60(6), 1142–1152 (2008)

    Article  Google Scholar 

  4. Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1980)

    Book  Google Scholar 

  5. Berkes, P., Orbán, G., Lengyel, M., Fiser, J.: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331(6013), 83–87 (2011)

    Article  Google Scholar 

  6. Camerer, C.F.: Behavioral Game Theory: Experiments in Strategic Interaction (The Roundtable Series in Behavioral Economics). Princeton University Press, Princeton (2003)

    Google Scholar 

  7. Daw, N., Niv, Y., Dayan, P.: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005)

    Article  Google Scholar 

  8. Deneve, S., Latham, P.E., Pouget, A.: Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 4(8), 826–831 (2001)

    Article  Google Scholar 

  9. Doll, B.B., Simon, D.A., Daw, N.D.: The ubiquity of model-based reinforcement learning. Curr. Opin. Neurobiol. 22(6), 1075–1081 (2012)

    Article  Google Scholar 

  10. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  Google Scholar 

  11. Fetsch, C.R., DeAngelis, G.C., Angelaki, D.E.: Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14(6), 429–442 (2013)

    Article  Google Scholar 

  12. Fetsch, C.R., Pouget, A., DeAngelis, G.C., Angelaki, D.E.: Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15(1), 146–154 (2012)

    Article  Google Scholar 

  13. Fiser, J., Berkes, P., Orbán, G., Lengyel, M.: Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14(3), 119–130 (2010)

    Article  Google Scholar 

  14. Franklin, D.W., Wolpert, D.M.: Computational mechanisms of sensorimotor control. Neuron 72(3), 425–442 (2011)

    Article  Google Scholar 

  15. Gigerenzer, G.: On narrow norms and vague heuristics: a reply to Kahneman and Tversky. Psychol. Rev. 103(3), 592–596 (1996)

    Article  Google Scholar 

  16. Gigerenzer, G., Todd, P.: Simple Heuristics That Make Us Smart. Ocford University Press, New York (1999)

    Google Scholar 

  17. Hampton, A.N., Bossaerts, P., O’Doherty, J.P.: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. J. Neurosci. Off. J. Soc. Neurosci. 26(32), 8360–8367 (2006)

    Article  Google Scholar 

  18. Hatfield, G.C.: The Natural and the Normative Theories of Spatial Perception from Kant to Helmholtz. MIT Press, Cambridge (1990)

    Google Scholar 

  19. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The “wake-sleep” algorithm for unsupervised neural networks. Science 268(5214), 1158–1161 (1995)

    Article  Google Scholar 

  20. Jacobs, R.A.: Optimal integration of texture and motion cues to depth. Vis. Res. 39, 3621–3629 (1999)

    Article  Google Scholar 

  21. Körding, K., Beierholm, U., Ma, W., Quartz, S., Tenenbaum, J., Shams, L.: Causal inference in multisensory perception. Plos One 2(9), e943 (2007)

    Article  Google Scholar 

  22. Kording, K.P., Wolpert, D.M.: The loss function of sensorimotor learning. Proc. Natl. Acad. Sci. U.S.A. 101(26), 9839–9842 (2004)

    Article  Google Scholar 

  23. Lee, D.: Game theory and neural basis of social decision making. Nat. Neurosci. 11(4), 404–409 (2008)

    Article  Google Scholar 

  24. Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A.: Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006)

    Article  Google Scholar 

  25. Pfister, J.-P., Dayan, P., Lengyel, M.: Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nat. Neurosci. 13(10), 1271–1275 (2010)

    Article  Google Scholar 

  26. Rutledge, R.B., Dean, M., Caplin, A., Glimcher, P.W.: Testing the reward prediction error hypothesis with an axiomatic model. J. Neurosci. 30(40), 13525–13536 (2010)

    Article  Google Scholar 

  27. Savage, L.J.: The Foundations of Statistics. Wiley Publishing, New York, NY (1954)

    MATH  Google Scholar 

  28. Schultz, W., Dayan, P., Montague, P.: A neural substrate of prediction and reward. Sci. 275(5306), 1593 (1997)

    Article  Google Scholar 

  29. Shams, L., Beierholm, U.R.: Causal inference in perception. Trends Cogn. Sci. 14(9), 1–8 (2010)

    Article  Google Scholar 

  30. Stocker, A.A., Simoncelli, E.P.: Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9(4), 578–85 (2006)

    Article  Google Scholar 

  31. Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)

    Article  Google Scholar 

  32. Trommershauser, J., Kording, K., Landy, M.S.: Sensory Cue Integration (Computational Neuroscience Series). Oxford University Press, New York (2011)

    Book  Google Scholar 

  33. Trommershauser, J., Maloney, L.T., Landy, M.S.: Statistical decision theory and the selection of rapid, goal-directed movements. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 20, 1419–1433 (2003)

    Article  Google Scholar 

  34. Trommershäuser, J., Maloney, L.T., Landy, M.S.: Decision making, movement planning and statistical decision theory. Trends Cogn. Sci. 12(8), 291–297 (2008)

    Article  Google Scholar 

  35. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Sci. 185, 1124–1131 (1974)

    Article  Google Scholar 

  36. Van Valen, L.: A new evolutionary law. Evol. Theor. 30, 1–30 (1973)

    Google Scholar 

  37. Watkins, C., Dayan, P.: Technical note Q-learning. Mach. Learn. 8, 279–292 (1992)

    MATH  Google Scholar 

  38. Weiss, Y., Simoncelli, E.P., Adelson, E.H.: Motion illusions as optimal percepts. Nat. Neurosci. 5, 598–604 (2002)

    Article  Google Scholar 

  39. Whiteley, L., Sahani, M.: Implicit knowledge of visual uncertainty guides decisions with asymmetric outcomes. J. Vis. 8, 1–15 (2008)

    Article  Google Scholar 

  40. Wolpert, D.M., Landy, M.S.: Motor control is decision-making. Curr. Opin. Neurobiol. 22(6), 996–1003 (2012)

    Article  Google Scholar 

  41. Wu, S.-W., Delgado, M.R., Maloney, L.T.: Economic decision-making compared with an equivalent motor task. Proc. Natl. Acad. Sci. U.S.A. 106(15), 6088–6093 (2009)

    Article  Google Scholar 

  42. Wu, S.W., Trommershauser, J., Maloney, L.T., Landy, M.S.: Limits to human movement planning in tasks with asymmetric gain landscapes. J. Vis. 6, 53–63 (2006)

    Article  Google Scholar 

  43. Wunderlich, K., Beierholm, U.R., Bossaerts, P., O’Doherty, J.P.: The human prefrontal cortex mediates integration of potential causes behind observed outcomes. J. Neurophysiol. 106(3), 1558–1569 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik R. Beierholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Beierholm, U.R. (2014). Bayes Optimality of Human Perception, Action and Learning: Behavioural and Neural Evidence. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics