Skip to main content

Reducing False Rain in Satellite Precipitation Products Using Cloudsat Cloud Classification Maps and Modis Multi-spectral Images

  • Chapter
  • First Online:
  • 718 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Because clouds play important roles in producing precipitation and in Earth’s radiative balance, they are a key element in studies of weather and climate, water and energy cycles, and hydrologic analysis. Low clouds have an important effect on cooling the Earth, as they reflect sunlight back to space. High, thin clouds have the opposite effect, allowing incoming sunshine to pass through but trapping heat that is trying to escape from earth. Improving our understanding of cloud structures is the main step in global climate studies and precipitation algorithm development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AghaKouchak, A, Nasrollahi, N, Habib, E, (2009). Accounting for Uncertainties of the TRMM Satellite Estimates, Remote Sensing, 1(3), 606–619, doi:10.3390/rs1030606.

    Google Scholar 

  • Aitkenhead, M.J., & Dyer, R. (2007). Improving land-cover classification using recognition threshold neural networks. Photogrammetric Engineering and Remote Sensing, 73(4), 413–421.

    Article  Google Scholar 

  • Austin, P. (1987). Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review, 115, 1053–1070.

    Article  Google Scholar 

  • Behrangi, A., Hsu, K., Imam, B., Sorooshian, S., & Kuligowski, R. 2009: Evaluating the utility of multi-spectral information in delineating the areal extent of precipitation. Journal of Hydrometeorology, 10(3), 684–700.

    Article  Google Scholar 

  • Behrangi, A., Hsu, K., Imam, B., & Sorooshian, S. (2010a). Daytime precipitation estimation using bispectral cloud classification system. Journal of Applied Meteorology, 49, 1015–1031.

    Google Scholar 

  • Behrangi, A., Imam, B., Hsu, K., Sorooshian, S., Bellerby, T. H., & Huffman, G. J. (2010b). REFAME: Rain estimation using forward-adjusted advection of microwave estimates. Journal of Hydrometeorology, 11, 1305–1321.

    Google Scholar 

  • Bellerby, T., Todd, M., Kniveton, D., & Kidd, C. (2000) Rainfall estimation from a combination of TRMM precipitation radar and goes multi-spectral satellite imagery through the use of an artificial neural network. Journal of Applied Meteorology, 39, 21152128.

    Article  Google Scholar 

  • Bellerby, T., Hsu, K., & Sorooshian, S. (2009) Lmodel: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration. Journal of Hydrometeorology, 10, 1081–1095.

    Article  Google Scholar 

  • Benediktsson, J. A., Swain, P.H., Ersoy, O. K. (1990). Neural network approaches versus statistical-methods in classification of multisource remote-sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 540–552.

    Article  Google Scholar 

  • Bishop, C. (1996). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Capacci, D., & Conway, B. (2005). Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteorological Applications, 12, 291–305.

    Article  Google Scholar 

  • Farahmand, A., AghaKouchak, A. (2013). A Satellite-Based Global Landslide Model, Natural Hazards and Earth System Sciences, 13, 1259–1267, doi:10.5194/nhess-13-1259-2013.

    Google Scholar 

  • Gallant, A. R., & White, H. (1992). On learning the derivatives of an unknown mapping with multilayer feed forward networks. Neural Networks, 5, 129–138.

    Article  Google Scholar 

  • Hara, Y., Atkins, R. G., Shin, R. T., Kong, J. A., Yueh, S. H., & Kwok, R. (1995). Application of Neural Networks for Sea Ice Classification in Polarimetric SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 740–748.

    Article  Google Scholar 

  • Hong, Y., Hsu, K., Gao, X., & Sorooshian, S. (2004). Precipitation estimation from remotely sensed imagery using artificial neural network-cloud classification system. Journal of Applied Meteorology and Climatology, 43, 18341853.

    Google Scholar 

  • Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multi-layer feed-forward networks. Neural Networks, 3, 551–560.

    Article  Google Scholar 

  • Hsu, K., Gao, X., Sorooshian, S., & Gupta, H. (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36, 1176–1190.

    Article  Google Scholar 

  • Hsu, K., Gupta, H., Gao, X., Sorooshian, S. (1999). Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resources Research, 35(5), 1605-1618.

    Article  Google Scholar 

  • Hsu, K., Bellerby, T., & Sorooshian, S. (2009). Lmodel: A satellite precipitation methodology using cloud development modeling. Part ii: Validation. Journal of Hydrometeorology, 10, 1096–1108.

    Article  Google Scholar 

  • Huffman, G., Adler, R., Bolvin, D., Gu, G., Nelkin, E., Bowman, K., Stocker, E., & Wolff, D. (2007). The TRMM multi-satellite precipitation analysis: Quasi-global, multiyear, combined- sensor precipitation estimates at fine scale. Journal of Hydrometeorology, 8, 3855.

    Article  Google Scholar 

  • Inoue, T. (1987). A cloud type classification with NOAA 7 split-window measurements. Journal of Geophysical Research-Atmospheres, 92, 3991 4000.

    Google Scholar 

  • Ji, C.Y. (2000). Land-Use Classification of Remotely Sensed Data Using Kohonen Self-organizing Feature Map Neural Networks. Photogrammetric Engineering and Remote Sensing, 66(12), 1451-1460.

    Google Scholar 

  • Joyce, R., Janowiak, J., Arkin, P., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.

    Article  Google Scholar 

  • Kidd, C., Kniveton, D., Todd, M., & Bellerby, T. (2003). Satellite rainfall estimation using combined passive microwave and infrared algorithms. Journal of Hydrometeorology, 4, 1088–1104.

    Article  Google Scholar 

  • Kuligowski, R. (2002). A self-calibrating real-time goes rainfall algorithm for short-term rainfall estimates. Journal of Hydrometeorology, 3, 112–130.

    Article  Google Scholar 

  • Kurino, T. (1997). A satellite infrared technique for estimating deep/shallow precipitation. Satellite Data Applications: Weather and Climate, 19, 511–514.

    Google Scholar 

  • Kwon, E. H., Sohn, B. J., Schmetz, J., & Watts, P. (2009). Use of ozone channel measurements for deep convective cloud height retrievals over the tropics, Fifth Annual Symposium on Future Operational Environmental Satellite Systems- NPOESS and GOES-R. http://ams.confex.com/ams/89annual/techprogram/paper_148113.htm

  • Lensky, I., & Rosenfeld, D. (2003). A night-rain delineation algorithm for infrared satellite data based on microphysical considerations. Journal of Applied Meteorology, 42(9), 1218–1226.

    Article  Google Scholar 

  • Li, Z., Li, J., Menzel, W., Schmit, T., & Ackerman, S. (2007) Comparison between current and future environmental satellite imagers on cloud classification using MODIS. Remote Sensing of Environment, 108, 311–326.

    Article  Google Scholar 

  • Lovejoy, S., & Mandelbrot, B. (1985) Fractal properties of rain, and a fractal model. Tellus Series A- Dynamic Meteorology and Oceanography, 37(3), 209–232.

    Article  Google Scholar 

  • Roskovensky, J., & Liou, K. (2003). Detection of thin cirrus using a combination of 1.38- µm reflectance and window brightness temperature difference. Journal of Geophysical Research, 108, AAC4–1–16.

    Article  Google Scholar 

  • Setvak, M., Rabin, R., Doswell, C., & Levizzani, V. (2003). Satellite observations of convective storm tops in the 1. 6, 3.7 and 3.9 µm spectral bands. Journal of Atmospheric Research, 67-8, 607–627.

    Google Scholar 

  • Sorooshian, S., Hsu, K., Gao, X., Gupta, H., Imam, B., & Braithwaite, D. (2000). Evolution of the PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9), 2035–2046.

    Article  Google Scholar 

  • Sorooshian, S., et al. (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society. doi: 10.1175/2011BAMS3158.1.

    Google Scholar 

  • Strabala, K., Ackerman, W., & Menzel, W. P. (1994). Cloud properties inferred from 8-12-µm data. Journal of Applied Meteorology, 33, 212 229.

    Google Scholar 

  • Tapiador, F., Kidd, C., Levizzani, V., & Marzano, F. (2004). A neural networks-based fusion technique to estimate half-hourly rainfall estimates at 0.1 degrees resolution from satellite passive microwave and infrared data. Journal of Applied Meteorology, 43(4), 576–594.

    Article  Google Scholar 

  • Thies, B., Nauss, T., & Bendix, J. (2008). Discriminating raining from non-raining cloud area at mid-latitudes using MSG SEVIRI daytime data. Atmospheric Chemistry and Physics, 8, 2341–2349.

    Article  Google Scholar 

  • Turk, F., & Miller, S. (2005). Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing, 43, 1059–1069.

    Article  Google Scholar 

  • Wang, X., Liou, K. N., Ou, S. S. C., Mace, G. G., & Deng, M. (2009). Remote sensing of cirrus cloud vertical size profile using MODIS data. Journal of Geophysical Research- Atmospheres, 114, 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Nasrollahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nasrollahi, N. (2015). Reducing False Rain in Satellite Precipitation Products Using Cloudsat Cloud Classification Maps and Modis Multi-spectral Images. In: Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-12081-2_4

Download citation

Publish with us

Policies and ethics