Skip to main content

3D CFD in Complex Vascular Systems: A Case Study

  • Conference paper
Biomedical Simulation (ISBMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8789))

Included in the following conference series:

Abstract

Modeling the flowing blood in vascular structures is crucial to perform in silico simulations in various clinical contexts. This remains however an emerging and challenging research field, that raises several open issues. In particular, a compromise is generally made between the completeness of the simulation and the complicated architecture of the vasculature: reduced order simulations (lumped parameter models) represent vascular networks, whereas detailed models are devoted to small regions of interest. However, technical improvements enable targeting of compartments of the blood circulation rather than focusing on vascular branched segments. This article aims at investigating the cerebral flow in the entire venous drainage that can be reconstructed from medical imaging.

This research was funded by a grant from the Région Champagne-Ardenne and by Agence Nationale de la Recherche (Grant Agreement ANR-12-MONU-0010). MRI images were provided by the In Vivo Imaging Platform of Université de Strasbourg. Computing resources were provided by the HPC Center of Université de Reims Champagne-Ardenne.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaller, B.: Physiology of cerebral venous blood flow: From experimental data in animals to normal function in human. Brain Res. Brain Res. Rev. 46, 243–260 (2004)

    Article  Google Scholar 

  2. Stoquart-Elsankari, S., Lehmann, P., Villette, A., Czosnyka, M., Meyer, M.E., Deramond, H., Balédent, O.: A phase-contrast MRI study of physiologic cerebral venous flow. J. Cereb. Blood F. Met. 29, 1208–1215 (2009)

    Article  Google Scholar 

  3. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics. MS & A, vol. 1. Springer (2009)

    Google Scholar 

  4. Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE T. Med. Imaging 24, 457–467 (2005)

    Article  Google Scholar 

  5. Larrabide, I., Kim, M., Augsburger, L., Villa-Uriol, M.C., Rüfenacht, D., Frangi, A.F.: Fast virtual deployment of self-expandable stents: Method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16, 721–730 (2012)

    Article  Google Scholar 

  6. Morales, H.G., Larrabide, I., Geers, A.J., Román, L.S., Blasco, J., Macho, J.M., Frangi, A.F.: A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE T. Med. Imaging 32, 119–129 (2013)

    Article  Google Scholar 

  7. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  8. Ho, H., Mithraratne, K., Hunter, P.: Numerical simulation of blood flow in an anatomically-accurate cerebral venous tree. IEEE T. Med. Imaging 32, 85–91 (2013)

    Article  Google Scholar 

  9. Reymond, P., Merenda, F., Perren, F., Rüfenacht, D., Stergiopulos, N.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. 297, 208–222 (2009)

    Google Scholar 

  10. Blanco, P.J., Leiva, J.S., Buscaglia, G.C.: A black-box decomposition approach for coupling heterogeneous components in hemodynamics simulations. Int. J. Num. Meth. Biomed. Eng. 29, 408–427 (2013)

    Article  Google Scholar 

  11. Müller, L.O., Toro, E.F.: A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Num. Meth. Biomed. Eng. (in press)

    Google Scholar 

  12. Xiao, N., Alastruey, J., Figueroa, C.A.: A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Num. Meth. Biomed. Eng. 30, 204–231 (2014)

    Article  MathSciNet  Google Scholar 

  13. Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.): STACOM 2013. LNCS, vol. 8330. Springer, Heidelberg (2014)

    Google Scholar 

  14. Boissonnat, J.D., Chaine, R., Frey, P., Malandain, G., Salmon, S., Saltel, E., Thiriet, M.: From arteriographies to computational flow in saccular aneurisms: The INRIA experience. Med. Image Anal. 9, 133–143 (2005)

    Article  Google Scholar 

  15. Sato, K., Imai, Y., Ishikawa, T., Matsuki, N., Yamaguchi, T.: The importance of parent artery geometry in intra-aneurysmal hemodynamics. Med. Eng. Phys. 30, 774–782 (2008)

    Article  Google Scholar 

  16. Ho, H., Sorrell, K., Peng, L., Yang, Z., Holden, A., Hunter, P.: Hemodynamic analysis for transjugular intrahepatic portosystemic shunt (TIPS) in the liver based on a CT-image. IEEE T. Med. Imaging 32, 92–98 (2013)

    Article  Google Scholar 

  17. Passerini, T., de Luca, M., Formaggia, L., Quarteroni, A., Veneziani, A.: A 3D/1D geometrical multiscale model of cerebral vasculature. J. Eng. Math. 64, 319–330 (2009)

    Article  MATH  Google Scholar 

  18. Blanco, P.J., Pivello, M.R., Urquiza, S.A., Feijoo, R.A.: On the potentialities of 3D-1D coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009)

    Article  Google Scholar 

  19. Mut, F., Wright, S., Ascoli, G., Cebral, J.R.: Characterization of the morphometry and hemodynamics of cerebral arterial trees in humans: A preliminary study. In: CMBE, pp. 87–90 (2011)

    Google Scholar 

  20. Miraucourt, M., Salmon, S., Szopos, M., Thiriet, M.: Blood flow simulations in the cerebral venous network. In: CMBE, pp. 187–190 (2013)

    Google Scholar 

  21. Dufour, A., Tankyevych, O., Naegel, B., Talbot, H., Ronse, C., Baruthio, J., Dokládal, P., Passat, N.: Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology. Med. Image Anal. 17, 147–164 (2013)

    Article  Google Scholar 

  22. Thiriet, M.: Cell and Tissue Organization in the Circulatory and Ventilatory Systems. Springer (2011)

    Google Scholar 

  23. Sforza, D.M., Löhner, R., Putman, C., Cebral, J.R.: Hemodynamic analysis of intracranial aneurysms with moving parent arteries: Basilar tip aneurysms. Int. J. Num. Meth. Biomed. Eng. 26, 1219–1227 (2010)

    Article  MATH  Google Scholar 

  24. Thiriet, M.: Biology and Mechanics of Blood Flows, part I: Biology of Blood Flows, part II: Mechanics and Medical Aspects of Blood Flows. Springer (2008)

    Google Scholar 

  25. Pironeau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  Google Scholar 

  26. Sheng, Z., Thiriet, M., Hecht, F.: A high-order scheme for the incompressible Navier-Stokes equations with open boundary condition. Int. J. Numer. Meth. Fl. 73, 58–73 (2013)

    Article  MathSciNet  Google Scholar 

  27. Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192, 262–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hecht, F.: New development in Freefem++. J. Num. Math. 20, 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Ethier, C.R., Steinman, D.A.: Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Numer. Meth. Fl. 19, 369–375 (1994)

    Article  MATH  Google Scholar 

  30. Gisolf, J., van Lieshout, J.J., van Heusden, K., Pott, F., Stok, W.J., Karemaker, J.M.: Human cerebral venous outflow pathway depends on posture and central venous pressure. J. Physiol. 560, 317–327 (2004)

    Article  Google Scholar 

  31. Ford, M.D., Stuhne, G.R., Nikolov, H.N., Habets, D.F., Lownie, S.P., Holdsworth, D.W., Steinman, D.A.: Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE T. Med. Imaging 24, 1586–1592 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Miraucourt, O. et al. (2014). 3D CFD in Complex Vascular Systems: A Case Study. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2014. Lecture Notes in Computer Science, vol 8789. Springer, Cham. https://doi.org/10.1007/978-3-319-12057-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12057-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12056-0

  • Online ISBN: 978-3-319-12057-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics