Skip to main content

Cerebral and Spinal Modulation of Pain by Emotions and Attention

  • Chapter
  • First Online:
Pain, Emotion and Cognition

Abstract

In this chapter, the effects of emotions on the spinal and cerebral processes underlying nociception and pain perception are examined. Throughout the chapter, the effects of emotions will be compared with those of attention, and the potential interactions between emotions and attention will be discussed. The overall portrait that emerges from this literature review is that emotions and attention can exert their effects at multiple levels of pain processing, from the spinal cord to the cerebral cortex. Moreover, because of the highly integrated and dynamic nature of the neural processes underlying pain perception, it is difficult to identify the origins of emotions’ and attention’s effects on pain. Future research should therefore aim at probing the effects of emotions and attention at various levels of pain processing by combining different psychophysiological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • al’Absi M, Petersen KL (2003) Blood pressure but not cortisol mediates stress effects on subsequent pain perception in healthy men and women. Pain 106:285–295

    Article  PubMed  Google Scholar 

  • Amanzio M, Benedetti F (1999) Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci 19:484–494

    CAS  PubMed  Google Scholar 

  • Andre J, Zeau B, Pohl M et al (2005) Involvement of cholecystokininergic systems in anxiety-induced hyperalgesia in male rats: behavioral and biochemical studies. J Neurosci 25:7896–7904

    Article  CAS  PubMed  Google Scholar 

  • Arnold MB (1960) Emotion and personality psychological aspects, vol 1. Columbia University Press, New York

    Google Scholar 

  • Atlas LY, Bolger N, Lindquist M, Wager TD (2010) Brain mediators of predictive cue effects on perceived pain. J Neurosci 30:12964–12977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartolo M, Serrao M, Gamgebeli Z et al (2013) Modulation of the human nociceptive flexion reflex by pleasant and unpleasant odors. Pain 154:2054–2059

    Article  PubMed  Google Scholar 

  • Bathien N (1971) Human spinal reflexes and attention levels. Electroencephalogr Clin Neurophysiol 30:32–37

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Mayberg HS, Wager TD et al (2005) Neurobiological mechanisms of the placebo effect. J Neurosci 25:10390–10402

    Article  CAS  PubMed  Google Scholar 

  • Berna C, Leknes S, Holmes E et al (2010) Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness. Biol Psychiatry 67:1083–1090

    Article  PubMed  Google Scholar 

  • Bruehl S, Burns JW, Chung OY, Chont M (2012) Naloxone inhibits not only stress-induced analgesia but also sympathetic activation and baroreceptor-reflex sensitivity. Psychosom Med 73:612–619

    Article  Google Scholar 

  • Buhle JT, Silvers JA, Wager TD et al (2014) Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 24(11):2981–2990

    Article  PubMed  Google Scholar 

  • Bushnell MC, Duncan G, Dubner R et al (1985) Attentional influences on noxious and innocuous cutaneous heat detection in humans and monkeys. J Neurophysiol 5:1103–1110

    CAS  Google Scholar 

  • Bushnell MC, Ceko M, Low L (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14:502–511

    Article  CAS  PubMed  Google Scholar 

  • Butler RK, Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184–202

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • CornĂ©lio AM, Nunes-de-Souza RL, Morgan MM (2012) Contribution of the rostral ventromedial medulla to post-anxiety induced hyperalgesia. Brain Res 1450:80–86

    Article  PubMed  Google Scholar 

  • Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    Article  CAS  PubMed  Google Scholar 

  • Danziger N (2006) Bases neurologiques de l’ affect douloureux. Rev Neurol 162:395–399

    Article  CAS  PubMed  Google Scholar 

  • Descartes R (1649) Les passions de l’âme. Henry Le Gras, Paris

    Google Scholar 

  • Dowman R (2001) Attentional set effects on spinal and supraspinal responses to pain. Psychophysiology 38:451–464

    Article  CAS  PubMed  Google Scholar 

  • Dum J, Herz A (1984) Endorphinergic modulation of neural reward systems indicated by behavioral changes. Pharmacol Biochem Behav 21:259–266

    Article  CAS  PubMed  Google Scholar 

  • Edwards L, Ring C, France CR et al (2007) Nociceptive flexion reflex thresholds and pain during rest and computer game play in patients with hypertension and individuals at risk for hypertension. Biol Psychol 76:72–82

    Article  PubMed Central  PubMed  Google Scholar 

  • Fechir M, Breimhorst M, Kritzmann S et al (2012) Naloxone inhibits not only stress-induced analgesia but also sympathetic activation and baroreceptor-reflex sensitivity. Eur J Pain 16:82–92

    Article  CAS  PubMed  Google Scholar 

  • Fields HL (1999) Pain: an unpleasant topic. Pain Suppl 6:S61–S69

    Article  Google Scholar 

  • Fields HL (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565–575

    Article  CAS  PubMed  Google Scholar 

  • Fields HL (2007) Understanding how opioids contribute to reward and analgesia. Reg Anesth Pain Med 32:242–246

    Article  CAS  PubMed  Google Scholar 

  • Fisher JP, Hassan DT, O’Connor N (1995) Minerva. Br Med J 310:70

    Article  Google Scholar 

  • Flor H, Birbaumer N, Schulz R et al (2002) Pavlovian conditioning of opioid and nonopioid pain inhibitory mechanisms in humans. Eur J Pain 6:395–402

    Article  PubMed  Google Scholar 

  • Foo H, Mason P (2005) Sensory suppression during feeding. Proc Natl Acad Sci USA 102:16865–16869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foo H, Mason P (2009) Analgesia accompanying food consumption requires ingestion of hedonic foods. J Neurosci 29:13053–13062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frew AK, Drummond PD (2007) Negative affect, pain and sex: the role of endogenous opioids. Pain 132(Suppl):S77–S85

    Article  CAS  PubMed  Google Scholar 

  • Gard T, Hölzel BK, Sack AT et al (2012) Pain attenuation through mindfulness is associated with decreased cognitive control and increased sensory processing in the brain. Cereb Cortex 22:2692–2702

    Article  PubMed Central  PubMed  Google Scholar 

  • Godinho F, Magnin M, Frot M et al (2006) Emotional modulation of pain: is it the sensation or what we recall? J Neurosci 26:11454–11461

    Article  CAS  PubMed  Google Scholar 

  • Grant J, Courtemanche J, Rainville P (2011) A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators. Pain 152:150–156

    Article  PubMed  Google Scholar 

  • Gray JA, Mcnaughton N (2000) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system, 2nd edn. Oxford University Press, Oxford, p 443

    Google Scholar 

  • Gray K, Wegner DM (2008) The sting of intentional pain. Psychol Sci 19:1260–1262

    Article  PubMed  Google Scholar 

  • Gross JJ (2002) Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39:281–291

    Article  PubMed  Google Scholar 

  • Haggard P, Iannetti GD, Longo MR (2013) Spatial sensory organization and body representation in pain perception. Curr Biol 23:R164–R176

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Neubert MJ (2004) Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol 92:1982–1989

    Article  CAS  PubMed  Google Scholar 

  • Jensen KB, Kosek E, Wicksell R et al (2012) Cognitive behavioral therapy increases pain-evoked activation of the prefrontal cortex in patients with fibromyalgia. Pain 153:1495–1503

    Article  PubMed  Google Scholar 

  • Kenntner-Mabiala R, Pauli P (2005) Affective modulation of brain potentials to painful and nonpainful stimuli. Psychophysiology 42:559–567

    Article  PubMed  Google Scholar 

  • Kenntner-Mabiala R, Andreatta M, Wieser MJ et al (2008) Distinct effects of attention and affect on pain perception and somatosensory evoked potentials. Biol Psychol 78:114–122

    Article  PubMed  Google Scholar 

  • Kut E, Candia V, von Overbeck J et al (2011) Pleasure-related analgesia activates opioid-insensitive circuits. J Neurosci 31:4148–4153

    Article  CAS  PubMed  Google Scholar 

  • Lapate RC, Lee H, Salomons TV et al (2012) Amygdalar function reflects common individual differences in emotion and pain regulation success. J Cogn Neurosci 24:148–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazarus RS (1966) Psychological stress and the coping process. McGraw-Hill, New York

    Google Scholar 

  • Le Roy C, Laboureyras E, Gavello-Baudy S et al (2011) Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization via a NMDA-dependent process. J Pain 12:1069–1079

    Article  PubMed  Google Scholar 

  • Ledoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • Legrain V, GuĂ©rit J-M, Bruyer R, Plaghki L (2002) Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain 99:21–39

    Article  PubMed  Google Scholar 

  • Leknes S, Berna C, Lee MC et al (2013) The importance of context: when relative relief renders pain pleasant. Pain 154:402–410

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewkowski MD, Ditto B, Roussos M, Young SN (2003) Sweet taste and blood pressure-related analgesia. Pain 106:181–186

    Article  PubMed  Google Scholar 

  • Lindquist K, Wager TD, Kober H et al (2012) The brain basis of emotion: a meta-analytic review. Behav Brain Sci 35:121–143

    Article  PubMed Central  PubMed  Google Scholar 

  • Lovick T (2008) Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci Biobehav Rev 32:852–862

    Article  CAS  PubMed  Google Scholar 

  • Ludwig DS, Kabat-zinn J (2014) Mindfulness in medicine. JAMA 300:1350–1351

    Google Scholar 

  • Lutz A, McFarlin DR, Perlman DM et al (2013) Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. Neuroimage 64:538–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Mason P (2001) Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci 24:737–777

    Article  CAS  PubMed  Google Scholar 

  • Mason P (2012) Medullary circuits for nociceptive modulation. Curr Opin Neurobiol 22:640–645

    Article  CAS  PubMed  Google Scholar 

  • McIntyre D, Edwards L, Ring C et al (2006) Systolic inhibition of nociceptive responding is moderated by arousal. Psychophysiology 43:314–319

    Article  PubMed  Google Scholar 

  • Merskey H, Spear FG (1967) The concept of pain. J Psychosom Res 11:59–67

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer V, Galhardo V, Maione S, Mackey SC (2009) Forebrain pain mechanisms. Brain Res Rev 60:226–242

    Article  PubMed Central  PubMed  Google Scholar 

  • Panksepp J (2007) Neurologizing the psychology of affects: how appraisal-based constructivism and basic emotion theory can coexist. Perspect Psychol Sci 2:281–296

    Article  Google Scholar 

  • Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 9:148–158

    Article  CAS  PubMed  Google Scholar 

  • Petersen KL, Al’Absi M, France C, Wittmers LE (2001) Acute mental challenge reduces nociceptive flexion reflex in men and women. Psychophysiology 38:S76

    Article  Google Scholar 

  • Pitman RK, van der Kolk B, Orr SP, Greenberg MS (1990) Naloxone-reversible analgesic response to combat-related stimuli in posttraumatic stress disorder. A pilot study. Arch Gen Psychiatry 47:541–544

    Article  CAS  PubMed  Google Scholar 

  • Ploner M, Lee MC, Wiech K et al (2011) Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cereb Cortex 21:719–726

    Article  PubMed  Google Scholar 

  • Poldrack R (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10:59–63

    Article  PubMed  Google Scholar 

  • Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–1772

    Article  CAS  PubMed  Google Scholar 

  • Rainville P, Duncan GH, Price DD et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    Article  CAS  PubMed  Google Scholar 

  • Rainville P, Bao QVH, ChrĂ©tien P (2005) Pain-related emotions modulate experimental pain perception and autonomic responses. Pain 118:306–318

    Article  PubMed  Google Scholar 

  • Rhudy JL, Meagher MW (2000) Fear and anxiety: divergent effects on human pain thresholds. Pain 84:65–75

    Article  CAS  PubMed  Google Scholar 

  • Rhudy JL, Meagher MW (2003) Individual differences in the emotional reaction to shock determine whether hypoalgesia is observed. Pain Med 4:244–256

    Article  PubMed  Google Scholar 

  • Rhudy JL, Williams AE, McCabe KM et al (2005) Affective modulation of nociception at spinal and supraspinal levels. Psychophysiology 42:579–587

    PubMed  Google Scholar 

  • Rhudy JL, Williams AE, McCabe KM et al (2006) Emotional modulation of spinal nociception and pain: the impact of predictable noxious stimulation. Pain 126:221–233

    Article  PubMed  Google Scholar 

  • Roy M, Peretz I, Rainville P (2008) Emotional valence contributes to music-induced analgesia. Pain 134:140–147

    Article  PubMed  Google Scholar 

  • Roy M, PichĂ© M, Chen J-I et al (2009) Cerebral and spinal modulation of pain by emotions. Proc Natl Acad Sci U S A 106:20900–20905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy M, Lebuis A, Peretz I, Rainville P (2011) The modulation of pain by attention and emotion: a dissociation of perceptual and spinal nociceptive processes. Eur J Pain 15:641.e1–641.e10

    Google Scholar 

  • Roy M, Lebuis A, Hugueville L et al (2012a) Spinal modulation of nociception by music. Eur J Pain 16:870–877

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Shohamy D, Wager TD (2012b) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Salomons TV, Johnstone T, Backonja M-M et al (2007) Individual differences in the effects of perceived controllability on pain perception: critical role of the prefrontal cortex. J Cogn Neurosci 19:993–1003

    Article  PubMed  Google Scholar 

  • Salovey P (1992) Mood-induced self-focused attention. J Pers Soc Psychol 62:699–707

    Article  CAS  PubMed  Google Scholar 

  • Sander D, Grandjean D, Scherer KR (2005) A systems approach to appraisal mechanisms in emotion. Neural Netw 18:317–352

    Article  PubMed  Google Scholar 

  • Sandrini G, Serrao M, Rossi P et al (2005) The lower limb flexion reflex in humans. Prog Neurobiol 77:353–395

    Article  PubMed  Google Scholar 

  • Schachter S, Wheeler L (1962) Epinephrine, chlorpromazine, and amusement. J Abnorm Soc Psychol 65:121–128

    Article  CAS  PubMed  Google Scholar 

  • Tracey I, Ploghaus A, Gati JS et al (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22:2748–2752

    CAS  PubMed  Google Scholar 

  • Villemure C, Bushnell MC (2002) Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95:195–199

    Article  PubMed  Google Scholar 

  • Villemure C, Bushnell MC (2009) Mood influences supraspinal pain processing separately from attention. J Neurosci 29:705–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villemure C, Slotnick BM, Bushnell MC (2003) Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain 106:101–108

    Article  PubMed  Google Scholar 

  • Wager TD, Rilling JK, Smith EE et al (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303:1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Wager TD, Atlas LY, Lindquist M et al (2013) An fMRI-based neurologic signature of physical pain. N Engl J Med 368:1388–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner KM, Roeder Z, Desrochers K et al (2013) The dorsomedial hypothalamus mediates stress-induced hyperalgesia and is the source of the pronociceptive peptide cholecystokinin in the rostral ventromedial medulla. Neuroscience 238:29–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watkins LR, Wiertelak EP, Maier SF (1993) The amygdala is necessary for the expression of conditioned but not unconditioned analgesia indicate danger or stimuli that produce fear can produce. Behav Neurosci 107:402–405

    Article  CAS  PubMed  Google Scholar 

  • Weisenberg M, Raz T, Hener T (1998) The influence of film-induced mood on pain perception. Pain 76:365–375

    Article  CAS  PubMed  Google Scholar 

  • Wiech K, Lin C, Brodersen KH et al (2010) Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci 30:16324–16331

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Symonds LL (2012) Neural substrate for facilitation of pain processing during sadness. Neuroreport 23:911–915

    Article  PubMed  Google Scholar 

  • Yilmaz P, Diers M, Diener S et al (2010) Brain correlates of stress-induced analgesia. Pain 151:522–529

    Article  PubMed  Google Scholar 

  • Yoshino A, Okamoto Y, Onoda K et al (2010) Sadness enhances the experience of pain via neural activation in the anterior cingulate cortex and amygdala: an fMRI study. Neuroimage 50:1194–1201

    Article  PubMed  Google Scholar 

  • Zelman DC, Howland EW, Nichols SN, Cleeland CS (1991) The effects of induced mood on laboratory pain. Pain 46:105–111

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Roy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roy, M. (2015). Cerebral and Spinal Modulation of Pain by Emotions and Attention. In: Pickering, G., Gibson, S. (eds) Pain, Emotion and Cognition. Springer, Cham. https://doi.org/10.1007/978-3-319-12033-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12033-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12032-4

  • Online ISBN: 978-3-319-12033-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics