Skip to main content

Anticancer Drug Development from Cyanobacteria

  • Chapter
  • First Online:
  • 748 Accesses

Part of the book series: SpringerBriefs in Pharmaceutical Science & Drug Development ((BRIEFSPSDD))

Abstract

More than 50 % of the marine cyanobacteria are potentially exploitable for extracting bioactive substances, which are effective in killing the cancer cells. Cyanobacterial metabolites exhibit a wide range of biological effects and some of these metabolites possess potential cytotoxic activities to different mammalian cell lines. The various cyanobacterial compounds with potential anticancer properties and their cytotoxicity are discussed in this chapter. Cyanobacteria also produce a wide range of compounds that revealed apoptotic properties. Potential cyanobacterial compounds with apoptotic properties and their use as drug delivery system with cellular targets are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrianasolo EH, Gross H, Goeger D, Musafija-Girt M, McPhail K, Leal RM, Mooberry SL, Gerwick WH (2005) Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org Lett 7:1375–1378

    CAS  PubMed  Google Scholar 

  • Barchi JJ, Bortin TR, Furusawa E, Patterson GLM, Moore RE (1983) Identification of a cytotoxin from Tolypothrix byssoidea as tubericin. Phytochemistry 22:2851–2852

    CAS  Google Scholar 

  • Bernardo PH, Chai CL, Le Guen M, Smith GD, Waring P (2007) Structure-activity delineation of quinones related to the biologically active calothrixin B. Bioorg Med Chem Lett 17:82–85

    CAS  PubMed  Google Scholar 

  • Berry JP, Gantar M, Gawley RE, Wang M, Rein KS (2004) Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades. Comp Biochem Physiol C 139:231–238

    Google Scholar 

  • Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang TT, More SV, Lu IH, Hsu JC, Chen TJ, Jen YC, Lu CK, Li WS (2011) Isomalyngamide A, A–1 and their analogs suppress cancer cell migration in vitro. Eur J Med Chem 46:3810–3819

    CAS  PubMed  Google Scholar 

  • Chen X, Smith GD, Waring P (2003) Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol 15:269–277

    CAS  Google Scholar 

  • Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW (2011) Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J Am Chem Soc 133:12474–12477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz RD, Tricot G, Zangari M, Zhan F (2011) Progress in myeloma stem cells. Am J Blood Res 1:135–45

    PubMed Central  PubMed  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng SS, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58:4087–4114

    CAS  Google Scholar 

  • Fischer U, Schulze-Osthoff K (2005) Apoptosis-based therapies and drug targets. Cell Death Differ 12:942–961

    CAS  PubMed  Google Scholar 

  • Fischer WJ, Hitzfeld BC, Tencalla F, Eriksson JE, Mikhailov A, Dietrich DR (2000) Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol Sci 54:365–373

    CAS  PubMed  Google Scholar 

  • Fladmark KE, Brustugun OT, Hovland R, Boe R, Gjertsen BT, Zhivotovsky B, Doskeland SO (1999) Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death Differ 6:1099–1108

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012) Mitochondrial control of cellular life, stress, and death. Circ Res 111:1198–1207

    CAS  PubMed  Google Scholar 

  • Garattini S, La Vecchia C (2001) Perspectives in cancer chemotherapy. Eur J Cancer 37:128–47

    Google Scholar 

  • Geiger M, Li RH, Friess W (2003). Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629

    CAS  PubMed  Google Scholar 

  • Gunasekera SP, Owle CS, Montaser R, Luesch H, Paul VJ (2011) Malyngamide 3 and cocosamides A and B from the marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. J Nat Prod 74:871–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta N, Pant SC, Vijayaraghavan R, Rao PV (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188: 285–296

    Google Scholar 

  • Gupta, S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13:1004–1033

    CAS  PubMed  Google Scholar 

  • Hambley TW, Hait WN (2009) Is anticancer drug development heading in the right direction? Cancer Res 69:1259–1262

    CAS  PubMed  Google Scholar 

  • Han B, Goeger D, Maier CS, Gerwick WH (2005) The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J Org Chem 70:3133–3139

    CAS  PubMed  Google Scholar 

  • Hooser SB (2000) Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicol Pathol 28:726–733

    CAS  PubMed  Google Scholar 

  • Humpage AR, Fontaine F, Froscio S, Burcham P, Falconer IR (2005) Cylindrospermopsin genotoxicity and cytotoxicity: role of cytochrome P-450 and oxidative stress. J Toxicol Env Heal A 68:739–753

    CAS  Google Scholar 

  • Itoh T, Tsuzuki R, Tanaka T, Ninomiya M, Yamaguchi Y, Takenaka H, Ando M, Tsukamasa Y, Koketsu M (2013) Reduced scytonemin isolated from Nostoc commune induces autophagic cell death in human T-lymphoid cell line Jurkat cells. Food Chem Toxicol 60:76–82

    CAS  PubMed  Google Scholar 

  • Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048–1065

    CAS  PubMed  Google Scholar 

  • Kalemkerian GP, Ou XL, Adil MR, Rosati R, Khoulani MM, Madan SK, Pettit GR (1999) Activity of dolastatin 10 against small-cell lung cancer in vitro and in vivo: induction of apoptosis and bcl-2 modification. Cancer Chemother Pharmacol 43:507–515

    CAS  PubMed  Google Scholar 

  • Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    CAS  PubMed  Google Scholar 

  • Kwan JC, Rocca JR, Abboud KA, Paul VJ, Luesch H (2008) Total structure determination of grassypeptolide: a new marine cyanobacterial cytotoxin. Org Lett 10:789–92

    CAS  PubMed  Google Scholar 

  • Lamelin JP, Vassalli P (1978) Heterogeneity of the B cell subpopulation operationally defined by (a) differentiation antigen(s) common to MOPC 104E and mature IgM plasma cells. Immunology 35:885–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW, Lee YC, Kang KS, Kim MI, Park HG, Choi S, Huh YS, Lee SY, Lee KB, Oh YK, Lee J (2014) Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep 4:4665

    PubMed Central  PubMed  Google Scholar 

  • LePage KT, Goeger D, Yokokawa F, Asano T, Shioiri T, Gerwick WH, Murray TF (2005) The neurotoxic lipopeptide kalkitoxin interacts with voltage-sensitive sodium channels in cerebellar granule neurons. Toxicol Lett 158:133–139

    CAS  PubMed  Google Scholar 

  • Liu L, Herfindal L, Jokela J, Shishido TK, Wahlsten M, Døskeland SO, Sivonen K (2014) Cyanobacteria from terrestrial and marine sources contain apoptogens able to overcome chemoresistance in acute myeloid leukemia cells. Mar Drugs 12:2036–2053

    PubMed Central  PubMed  Google Scholar 

  • Lu W, Yu P, Li J (2011) Induction of apoptosis in human colon carcinoma COLO 205 cells by the recombinant alpha subunit of C-phycocyanin. Biotechnol Lett 33:637–644

    CAS  PubMed  Google Scholar 

  • Luesch H, Yoshida WY, Moore RE, Paul VJ, Mooberry SL (2000) Isolation, structure determination, and biological activity of lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 63:611–615

    CAS  PubMed  Google Scholar 

  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001a) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    CAS  PubMed  Google Scholar 

  • Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001b) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc 123:5418–5423

    CAS  PubMed  Google Scholar 

  • Lytvyn DI, Yemets AI, Blume YB (2010) UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ Exp Bot 68:51–57

    CAS  Google Scholar 

  • MacKintosch C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264:187–192

    Google Scholar 

  • MacKintosh RW, Dalby KN, Campbell DG, Cohen PT, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371:236–240

    CAS  PubMed  Google Scholar 

  • Malloy KL, Choi H, Fiorilla C, Valeriote FA, Matainaho T, Gerwick WH (2012) Hoiamide D, a marine cyanobacteria-derived inhibitor of p53/MDM2 interaction. Bioorg Med Chem Lett 22:683–688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao YB, Song G, Cai QF, Liu M, Luo HH, Shi MX, Ouyang G, Bao SD (2006) Hydrogen peroxide-induced apoptosis in human gastric carcinoma MGC803 cells. Cell Biol Int 30:332–337

    CAS  PubMed  Google Scholar 

  • Marquez BL, Watts KS, Yokochi A, Roberts MA, Verdier-Pinard P, Jimenez JI, Hamel E, Scheuer PJ, Gerwick WH (2002) Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod 65:866–871

    CAS  PubMed  Google Scholar 

  • Martins RF, Ramos MF, Herfindal L, Sousa JA, Skaerven K, Vasconcelos VM (2008) Antimicrobial and cytotoxic assessment of marine cyanobacteria—Synechocystis and Synechococcus. Mar Drugs 6:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarty MF (2007) Clinical potential of Spirulina as a source of phycocyanobilin. J Med Food 10:566–570

    CAS  PubMed  Google Scholar 

  • Medina RA, Goeger DE, Hills P, Mooberry SL, Huang N, Romero LI, Ortega-Barria E, Gerwick WH, McPhail KL (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meickle T, Matthew S, Ross C, Luesch H, Paul V (2009) Bioassay-guided isolation and identification of desacetyl-microcolin B from Lyngbya cf. polychroa. Planta Med 75:1427–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metcalf JS, Lindsay J, Beattie KA, Birmingham S, Saker ML, Törökné AK, Codd GA (2002) Toxicity of cylindrospermopsin to the brine shrimp Artemia salina comparisons with protein synthesis inhibitors and microcystins. Toxicon 40:1115–1120

    CAS  PubMed  Google Scholar 

  • Mevers E, Liu W, Engene N, Mohimani H, Byrum T, Pevzner PA, Dorrestein PC, Spadafora C, Gerwick WH (2011) Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. J Nat Prod 74:928–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    CAS  PubMed  Google Scholar 

  • Morlière P, Mazière JC, Santus R, Smith CD, Prinsep MR, Stobbe CC, Fenning MC, Golberg JL, Chapman JD (1998) Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res 58:3571–3578

    PubMed  Google Scholar 

  • Murakami M, Sun Q, Ishida K, Matsuda H, Okino T, Yamuguchi K (1997) Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26). Phytochemistry 45:1997–1202

    Google Scholar 

  • Muta T, Miyamoto T, Fujisaki T, Ohno Y, Kamimura T, Henzan T, Kato K, Takenaka K, Iwasaki H, Eto T, Takamatsu Y, Teshima T, Akashi K (2013) Effect of bortezomib-based induction therapy on the peripheral blood stem cell harvest in multiple myeloma. Rinsho Ketsueki 54:109–16

    PubMed  Google Scholar 

  • Nagarajan M, Maruthanayagam V, Sundararaman M (2012) A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. J Appl Toxicol 32:153–185

    CAS  PubMed  Google Scholar 

  • Nair S, Bhimba BV (2013) Bioactive potency of cyanobacteria Oscillatoria spp. Int J Pharm Pharm Sci 5:611–612

    Google Scholar 

  • Nogle LM, Gerwick WH (2002) Somocystinamide A, a novel cytotoxic disulfide dimer from a Fijian marine cyanobacterial mixed assemblage. Org Lett 4:1095–1098

    CAS  PubMed  Google Scholar 

  • Nogle LM, Okino T, Gerwick WH (2001) Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64:983–985

    CAS  PubMed  Google Scholar 

  • Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oftedal L, Selheim F, Wahlsten M, Sivonen K, Doskeland SO, Herfindal L (2010) Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs 8:2659–2672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oftedal L, Skjaerven KH, Coyne RT, Edvardsen B, Rohrlack T, Skulberg OM, Døskeland SO, Herfindal L (2011) The apoptosis-inducing activity towards leukemia and lymphoma cells in a cyanobacterial culture collection is not associated with mouse bioassay toxicity. J Ind Microbiol Biotechnol 38:489–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ou Y, Xu S, Zhu D, Yang X (2014) Molecular mechanisms of exopolysaccharide from Aphanothece halaphytica (EPSAH) induced apoptosis in HeLa cells. PloS ONE 9:e87223

    PubMed Central  PubMed  Google Scholar 

  • Ozoren N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147

    PubMed  Google Scholar 

  • Patterson GM, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7-O-methyl-scytophycin b) a potent bioactive metabolite from cyanobacteria. Ach Microbiol 157:406–410

    CAS  Google Scholar 

  • Patterson GML, Smith CD, Kimura LH, Britton BA, Carmeli S (1993) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil Cytoskeleton 24:39–48

    CAS  PubMed  Google Scholar 

  • Prinsep MR, Caplan FR, Moore RE, Patterson GM, Smith CD (1992) Tolyporphin, a novel multidrug resistance-reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 114:385–387

    CAS  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–9

    CAS  PubMed  Google Scholar 

  • Rodney WR, Rothschild JM, Willis AC, Chazal NM, Kirk J, Saliba KJ, Smith GD (1999) Calothrixin A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513–13520

    Google Scholar 

  • Rubio BK, Parrish SM, Yoshida W, Schupp PJ, Schils T, Williams PG (2010) Depsipeptides from a Guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Lett 51:6718–6721

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E (2010) Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 8:629–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvador LA, Paul VJ, Luesch H, Caylobolide B (2010) a macrolactone from symplostatin1-producing marine cyanobacteria Phormidium spp. from Florida. J Nat Prod 73:1606–1609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: the molecular model and its implications for light-harvesting. J Mol Biol 188:651–676

    CAS  PubMed  Google Scholar 

  • Senthilkumar CS, Ganesh N (2012) Lenalidomide-based combined therapy induced alterations in serum proteins of multiple myeloma patient: a follow-up case report and overview of the literature. Exp Oncol 34:373–376

    CAS  PubMed  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Letters 10:3223–3230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih C, Teicher BA (2001) Cryptophycins: a novel class of potent antimitotic antitumor depsipeptides. Curr Pharm Des 7:1259–1276

    CAS  PubMed  Google Scholar 

  • Simmons TL, McPhail KL, Ortega-Barrı´a E, Mooberry SL, Gerwick WH (2006) Belamide A: a new antimitotic tetrapeptide from a Panamanian marine cyanobacterium. Tetrahedron Lett 47:3387–3390

    CAS  Google Scholar 

  • Sisay MT, Hautmann S, Mehner C, Konig GM, Bajorath J, Gutschow M (2009) Inhibition of human leukocyte elastase by brunsvicamides A–C: cyanobacterial cyclic peptides. Chem Med Chem 4:1425–1429

    CAS  PubMed  Google Scholar 

  • Smith CD, Zhang XQ, Moorbery SL, Patterson GML, Moore RE (1994) Cryptophycin—a new antimicrotubule agent active against drug-resistant cells. Cancer Res 54:3779–3784

    CAS  PubMed  Google Scholar 

  • Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Technol 99:188–194

    CAS  PubMed  Google Scholar 

  • Soria-Mercado IE, Pereira A, Cao Z, Murray TF, Gerwick WH (2009) Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Org Lett 11:4704–4707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH, Jacobs RS, Marshall LA (2002) Scytonemin—a marine natural product inhibitor of kinases key in hyper proliferative inflammatory diseases. Inflamm Res 51:112–114

    CAS  PubMed  Google Scholar 

  • Subhashini J, Mahipal SVK, Reddy MC, Mallikarjuna RM, Rachamallu A, Reddanna P (2004) Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line -K 562. Biochem Pharmacol 68:453–462

    CAS  PubMed  Google Scholar 

  • Surakka A, Sihvonen LM, Lehtimaki JM, Wahlsten M, Vuorela P, Sivonen K (2005) Benthic cyanobacteria from Baltic Sea contain cytotoxic Anabaena, Nodularia and Nostoc strains and an apoptosis-inducing Phormidium strain. Environ Toxicol 20:285–292

    CAS  PubMed  Google Scholar 

  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    CAS  PubMed  Google Scholar 

  • Teruya T, Sasaki H, Kitamura K, Nakayama T, Suenaga K (2009) Biselyngbyaside, a macrolide glycoside from the marine cyanobacterium Lyngbya sp. Org Lett 11:2421–2424

    CAS  PubMed  Google Scholar 

  • Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676

    Google Scholar 

  • Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144

    CAS  PubMed  Google Scholar 

  • Trimurtulu G, Ohtani I, Patterson GM, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116:4729–4737

    CAS  Google Scholar 

  • Tripathi A, Puddick J, Prinsep MR, Rottmann M, Tan LT (2010) Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73:1810–1814

    CAS  PubMed  Google Scholar 

  • Tripathi A, Fang W, Leong DT, Tan LT (2012) Biochemical studies of the lagunamides, potent cytotoxic cyclic depsipeptides from the marine cyanobacterium Lyngbya majuscula. Mar Drugs 10:1126–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    CAS  PubMed  Google Scholar 

  • Uzair B, Tabassum S, Rasheed M, Rehman SF (2012) Exploring marine cyanobacteria for lead compounds of pharmaceutical importance. Sci World J 1–10.

    Google Scholar 

  • Verdier-Pinard P, Lai JY, Yoo HD, Yu J, Marquez B, Nagle DG, Nambu M, White JD, Falck JR, Gerwick WH, Day BW, Hamel E (1998) Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol Pharmaco 53:62–76

    CAS  Google Scholar 

  • Wang L, Pan B, Sheng J, Xu J, Hu Q (2007). Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chem 105:36–41

    CAS  Google Scholar 

  • Wang B, Huang PH, Chen CS, Forsyth CJ (2011) Total syntheses of the histone deacetylase inhibitors largazole and 2-epi-largazole: application of n-heterocyclic carbene mediated acylations in complex molecule synthesis. J Org Chem 76:1140–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams PG, Yoshida WY, Moore RE, Paul VJ (2002) Isolation and structure determination of obyanamide: a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 65:29–31

    CAS  PubMed  Google Scholar 

  • Williams PG, Yoshida WY, Moore RE, Paul VJ (2003a) Tasipeptins A and B: new cytotoxic depsipeptides from the marine cyanobacterium Symploca sp. J Nat Prod 66:620–624

    CAS  PubMed  Google Scholar 

  • Williams PG, Yoshida WY, Quon MK, Moore RE, Paul VJ (2003b) Ulongapeptin: a cytotoxic cyclic depsipeptide from a Palauan marine cyanobacterium Lyngbya sp. J Nat Prod 66:651–654

    CAS  PubMed  Google Scholar 

  • Williams PG, Yoshida WY, Moore RE, Paul VJ (2004) Micromide and guamamide: cytotoxic alkaloids from a species of the marine cyanobacterium Symploca. J Nat Prod 67:49–53

    CAS  PubMed  Google Scholar 

  • Wrasidlo W, Mielgo A, Torres VA, Barbero S, Stoletov K, Suyama TL, Klemke RL, Gerwick WH, Carson DA, Stupack DG (2008) The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. PNAS 105:2313–2318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokokawa F, Sameshima H, Shioiri T (2001) Total synthesis of lyngbyabellin a, a potent cytotoxic metabolite from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett 42:4171–4174

    CAS  Google Scholar 

  • Yonezawa T, Mase N, Sasaki H, Teruya T, Hasegawa S, Cha BY, Yagasaki K, Suenaga K, Nagai K, Woo JT (2012) Biselyngbyaside, isolated from marine cyanobacteria, inhibits osteoclastogenesis and induces apoptosis in mature osteoclasts. J Cell Biochem 113:440–448

    CAS  PubMed  Google Scholar 

  • Žegura B, Lah TT, Filipič M (2006) Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mutat Res 611:25–33

    PubMed  Google Scholar 

  • Žegura B, Zajc I, Lah TT, Filipič M (2008) Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon 51:615–623

    PubMed  Google Scholar 

  • Zhang JY (2002) Apoptosis-based anticancer drugs. Nat Rev Drug Discov 1:101–102

    CAS  PubMed  Google Scholar 

  • Zheng L, Lin X, Wu N, Liu M, Zheng Y, Sheng J, Xiaofeng JI, Sun M (2013) Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim Biophys Acta 1836:42–48

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikha Mandal .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mandal, S., Rath, J. (2015). Anticancer Drug Development from Cyanobacteria. In: Extremophilic Cyanobacteria For Novel Drug Development. SpringerBriefs in Pharmaceutical Science & Drug Development. Springer, Cham. https://doi.org/10.1007/978-3-319-12009-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12009-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12008-9

  • Online ISBN: 978-3-319-12009-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics