Skip to main content

Transcriptome Analysis Throughout RNA-seq

  • Chapter
  • First Online:
Transcriptomics in Health and Disease

Abstract

Differential gene expression profile is a powerful tool to identify changes in cell or tissue trancriptomes, which allows to understanding complex biological process such as oncogenesis, cell differentiation and host immunological response to pathogens, among others. To date, the gold standard technique to compare gene expression profile is micro-array hybridization of a RNA preparation. In recent years technological advances led to a new generation of sequencing methods, which can be explored to uncover the complete content of a cell transcriptome. Such a deep sequencing of a RNA preparation, named RNA-seq, allows to virtually detect the complete RNA content, including low abundant isoforms. The RNA-seq quantitative aspect may be further explored to detect gene differential expression based on a reference genome and gene model. In contrast to micro-arrays, RNA-seq may find a broader range of RNA isoforms as well as novel RNA molecules, and has been gradually substituting micro-arrays to differential gene expression profile. In this chapter we describe how deep sequencing may be used to describe changes in the gene expression profile, its advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexa A, Rahnenfuhrer J (2010) topGO: enrichment analysis for gene ontology. R package version 28

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. doi:10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017. doi:10.1101/gr.133744.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD (2013) Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc 8(9):1765–1786

    Article  PubMed  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Reference Source

    Google Scholar 

  • Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9(9):1202–1208. doi:10.1038/nm924

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59. doi:10.1038/nature07517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Black MB, Parks BB, Pluta L, Chu TM, Allen BC, Wolfinger RD, Thomas RS (2014) Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments. Toxicol Sci 137(2):385–403. doi:10.1093/toxsci/kft249

    Article  CAS  PubMed  Google Scholar 

  • Carpenter PA, Pavlovic S, Tso JY, Press OW, Gooley T, Yu XZ, Anasetti C (2000) Non-Fc receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells. J Immunol 165(11):6205–6213

    Article  CAS  PubMed  Google Scholar 

  • Chatenoud L (2003) CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 3(2):123–132. doi:10.1038/nri1000

    Article  CAS  PubMed  Google Scholar 

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14(6):1147–1159. doi:10.1101/gr.1917404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chi HW, Yang YS, Shang ST, Chen KH, Yeh KM, Chang FY, Lin JC (2011) Candida albicans versus non-albicans bloodstream infections: the comparison of risk factors and outcome. J Microbiol Immunol Infect 44(5):369–375. doi:10.1016/j.jmii.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed Central  PubMed  Google Scholar 

  • Gordon A, Hannon G (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Available at: http://hannonlabcshledu/fastx_toolkit/

    Google Scholar 

  • Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform 11:422. doi:10.1186/1471-2105-11-422

    Article  Google Scholar 

  • Harrington CT, Lin EI, Olson MT, Eshleman JR (2013) Fundamentals of pyrosequencing. Arch Pathol Lab Med 137(9):1296–1303. doi:10.5858/arpa.2012-0463-RA

    Article  CAS  PubMed  Google Scholar 

  • Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18(5):802–809. doi:10.1101/gr.072033.107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermuller J (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5(9):e1000502. doi:10.1371/journal.pcbi.1000502

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt L, Teupser D, Hackermueller J, Stadler PF (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing, and fusion detection. Genome Biol 15(2):R34. doi:10.1186/gb-2014-15-2-r34

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunniger K, Lehnert T, Bieber K, Martin R, Figge MT, Kurzai O (2014) A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput Biol 10(2):e1003479. doi:10.1371/journal.pcbi.1003479

    Article  PubMed Central  PubMed  Google Scholar 

  • Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011:bar049. doi:10.1093/database/bar049

    Article  Google Scholar 

  • Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7(12):1009–1015. doi:10.1038/nmeth.1528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuhn RM, Haussler D, Kent WJ (2013) The UCSC genome browser and associated tools. Brief Bioinform 14(2):144–161. doi:10.1093/bib/bbs038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99(2):248–256. doi:10.3732/ajb.1100340

    Article  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed Central  PubMed  Google Scholar 

  • Lesniewska A, Okoniewski MÇJ (2011) rnaSeqMap: a bioconductor package for RNA sequencing data exploration. BMC Bioinform 12(1):200

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed Central  PubMed  Google Scholar 

  • Li J, Witten DM, Johnstone IM, Tibshirani R (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 13(3):523–538. doi:10.1093/biostatistics/kxr031

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. doi:10.1155/2012/251364

    Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303. doi:10.1146/annurev-anchem-062012-092628

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi:10.1038/nature03959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marr KA, Patterson T, Denning D (2002) Aspergillosis. Pathogenesis, clinical manifestations, and therapy. Infect Dis Clin North Am 16(4):875–894, vi

    Article  PubMed  Google Scholar 

  • Marsh M, Tu O, Dolnik V, Roach D, Solomon N, Bechtol K, Smietana P, Wang L, Li X, Cartwright P, Marks A, Barker D, Harris D, Bashkin J (1997) High-throughput DNA sequencing on a capillary array electrophoresis system. J Capill Electrophor 4(2):83–89

    CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  • Martinez-Alvarez JA, Perez-Garcia LA, Flores-Carreon A, Mora-Montes HM (2014) The immune response against Candida spp. and Sporothrix schenckii. Rev Iberoam Micol 31(1):62–66. doi:10.1016/j.riam.2013.09.015

    Article  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  • Miceli MH, Diaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11(2):142–151. doi:10.1016/S1473-3099(10)70218-8

    Article  PubMed  Google Scholar 

  • Miramon P, Kasper L, Hube B (2013) Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 202(3):183–195. doi:10.1007/s00430-013-0288-z

    Article  PubMed  Google Scholar 

  • MySQL A (1995) MySQL: the world’s most popular open source database. Available at: www.mysql.com.

  • Pappas PG (2006) Invasive candidiasis. Infect Dis Clin North Am 20(3):485–506. doi:10.1016/j.idc.2006.07.004

    Article  PubMed  Google Scholar 

  • Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, Powderly W, Kauffman CA, Hyslop N, Mangino JE, Chapman S, Horowitz HW, Edwards JE, Dismukes WE (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37(5):634–643. doi:10.1086/376906

    Article  PubMed  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14(9):R95. doi:10.1186/gb-2013-14-9-r95

    Article  PubMed Central  PubMed  Google Scholar 

  • Richardson M, Lass-Florl C (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 14(Suppl 4):5–24. doi:10.1111/j.1469-0691.2008.01978.x

    Article  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. doi:10.1093/bioinformatics/btp616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM (2012) Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics 13:484. doi:10.1186/1471-2164-13-484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864. doi:10.1093/bioinformatics/btr026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sedlazeck FJ, Rescheneder P, von Haeseler A (2013) NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29(21):2790–2791. doi:10.1093/bioinformatics/btt468

    Article  CAS  PubMed  Google Scholar 

  • Shendure J (2008) The beginning of the end for microarrays? Nat Methods 5(7):585–587. doi:10.1038/nmeth0708-585

    Article  CAS  PubMed  Google Scholar 

  • Shigemura K, Osawa K, Jikimoto T, Yoshida H, Hayama B, Ohji G, Iwata K, Fujisawa M, Arakawa S (2014) Comparison of the clinical risk factors between Candida albicans and Candida non-albicans species for bloodstream infection. J Antibiot 67:311–314. doi:10.1038/ja.2013.141

    Article  CAS  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123. doi:10.1101/gr.089532.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sirbu A, Kerr G, Crane M, Ruskin HJ (2012) RNA-seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering. PLoS one 7(12):e50986. doi:10.1371/journal.pone.0050986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  CAS  PubMed  Google Scholar 

  • Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679. doi:10.1038/321674a0

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3. doi:10.2202/1544-6115.1027

    Google Scholar 

  • Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform 14:91. doi:10.1186/1471-2105-14-91

    Article  Google Scholar 

  • Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9:640. doi:10.1038/msb.2012.61

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang S, Riva A (2013) PASTA: splice junction identification from RNA-sequencing data. BMC Bioinform 14:116. doi:10.1186/1471-2105-14-116

    Article  Google Scholar 

  • Team RC (2005) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  • Tierney L, Linde J, Muller S, Brunke S, Molina JC, Hube B, Schock U, Guthke R, Kuchler K (2012) An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol 3:85. doi:10.3389/fmicb.2012.00085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Salzberg SL (2009) How to map billions of short reads onto genomes. Nat Biotechnol 27(5):455–457. doi:10.1038/nbt0509-455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25(9):1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. doi:10.1038/nbt.1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53. doi:10.1038/nbt.2450

    Article  CAS  PubMed  Google Scholar 

  • Van Verk MC, Hickman R, Pieterse CM, Van Wees SC (2013) RNA-seq: revelation of the messengers. Trends Plant Sci 18(4):175–179. doi:10.1016/j.tplants.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  • Wagner GnP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131(4):281–285

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS one 9(1):e78644. doi:10.1371/journal.pone.0078644

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Brígido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raiol, T. et al. (2014). Transcriptome Analysis Throughout RNA-seq. In: Passos, G. (eds) Transcriptomics in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-11985-4_2

Download citation

Publish with us

Policies and ethics